Vol. 43
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-30
3D Super-Resolution Fluorescence Microscopy Using Cylindrical Vector Beams
By
Progress In Electromagnetics Research Letters, Vol. 43, 73-81, 2013
Abstract
We propose a method to obtain nano-scale 3D super-resolution in STED fluorescence microscopy. A double-ring-shaped cylindrical vector vortex beam, with an appropriate vortex angle and a proper truncation parameter of the beam, is used to generate a 3D dark spot as the erase spot. A single-ring-shaped radially polarized beam is used as a pump beam, which can generate a sharper 3D bright spot. The volume of the generated 3D dark spot is small and the uniformity of the light wall surrounding the spot is quite high. Consequently, the 3D super-resolution ability of a STED microscope is improved and nano-scale three-dimensional resolutions are obtained.
Citation
Taikei Suyama, and Yaoju Zhang, "3D Super-Resolution Fluorescence Microscopy Using Cylindrical Vector Beams," Progress In Electromagnetics Research Letters, Vol. 43, 73-81, 2013.
doi:10.2528/PIERL13080205
References

1. Kaplan, A., N. Friedman, and N. Davidson, "Optimized single-beam dark optical trap," J. Opt. Soc. Am. B, Vol. 19, 1233-1238, 2002.
doi:10.1364/JOSAB.19.001233

2. Isenhower, L., W. Williams, A. Dally, and M. Saffman, "Atom trapping in an interferometrically generated bottle beam trap," Opt. Lett., Vol. 34, 1159-1161, 2009.
doi:10.1364/OL.34.001159

3. Watanabe, T., Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, "Two-point-separation in super-resolution fluores-cence microscope based on up-conversion fluorescence depletion technique," Opt. Express, Vol. 11, 3271-3276, 2003.
doi:10.1364/OE.11.003271

4. Hell, S. W., "Far-field optical nanoscopy," Science, Vol. 316, 1153-1158, 2007.
doi:10.1126/science.1137395

5. Lotito, V., U. Sennhauser, C. V. Hafner, and G.-L. Bona, "Interaction of an asymmetric scanning near field optical microscopy probe with °uorescent molecules," Progress In Electromagnetics Research, Vol. 121, 281-299, 2011.
doi:10.2528/PIER11091703

6. Liao, C.-C. and Y.-L. Lo, "Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy," Progress In Electromagnetics Research, Vol. 112, 415-440, 2011.

7. Di Donato, A., A. Morini, and M. Farina, "Optical fiber extrinsic micro-cavity scanning microscopy," Progress In Electromagnetics Research,, Vol. 133, 347-366, 2013.

8. Zhang, Y., B. Ding, and T. Suyama, "Trapping two types of particles using a double-ring-shaped radially polarized beam," Phys. Rev. A, Vol. 81, 023831, 2010.
doi:10.1103/PhysRevA.81.023831

9. Zhang, Y. and J. Bai, "Improving the recording ability of a near-field optical storage system by higher-order radially polarized beams," Opt. Express, Vol. 17, 3698-3706, 2009.
doi:10.1364/OE.17.003698

10. Zhang, Y., Y. Okuno, and X. Xu, "Theoretical study of optical recording with a solid immersion lens illuminated by focused double-ring-shaped radially polarized beam," Opt. Commun., Vol. 282, 4481-4488, 2009.
doi:10.1016/j.optcom.2009.08.031

11. Ozeri, R., L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A, Vol. 59, R1750-R1753, 1999.
doi:10.1103/PhysRevA.59.R1750

12. Bokor, N. and N. Davidson, "Tight parabolic dark spot with high numerical aperture focusing with a circular π phase plate," Opt. Commun., Vol. 270, 145-150, 2007.
doi:10.1016/j.optcom.2006.09.022

13. Moser, T., H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, "Polarization-selective grating mirrors used in the generation of radial polarization," Appl. Phys. B, Vol. 80, 707-713, 2005.
doi:10.1007/s00340-005-1794-5

14. onezawa, K., Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett., Vol. 31, 2151-2153, 2006.
doi:10.1364/OL.31.002151

15. Youngworth, K. S. and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express, Vol. 7, 77-87, 2000.
doi:10.1364/OE.7.000077

16. Sahar, E. and D. Treves, "Excitation singlet-state absorption in dyes and their effect on dyes lasers," IEEE J. Quntum Electronics, Vol. 13, 962-967, 1977.
doi:10.1109/JQE.1977.1069258

17. Westphal, V. and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phy. Rev. Lett., Vol. 94, 143903, 2005.
doi:10.1103/PhysRevLett.94.143903

18. Harke, B., J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, "Resolution scaling in STED microscopy," Opt. Express, Vol. 16, 4154-4162, 2008.
doi:10.1364/OE.16.004154