Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-11
Vertical Cascaded Planar EBG Structure for SSN Suppression
By
Progress In Electromagnetics Research, Vol. 142, 423-435, 2013
Abstract
A novel vertical cascaded planar electromagnetic bandgap (EBG) structure is proposed for SSN suppression with the ultra-wideband at the restraining depth of -30 dB by analyzing the simultaneous switching noise (SSN) suppression mechanism and the equivalent circuit model for EBG structure. Moreover, the SSN suppression bandwidth can be broadened by using different novel EBG structures required by vertically cascading different planar EBG structures. In addition, the structure is verified to meet signal integrity (SI) by the time-domain simulation. The tested results show that the presented EBG is accordant to the simulated results of the theory method by the vector network analyzer. The proposed structures provide a new designing method for EBG structures to improve the ability of suppressing SSN.
Citation
Ling-Feng Shi, and Hong-Feng Jiang, "Vertical Cascaded Planar EBG Structure for SSN Suppression," Progress In Electromagnetics Research, Vol. 142, 423-435, 2013.
doi:10.2528/PIER13080107
References

1. He, Y., L. Li, C. H. Liang, and Q. H. Liu, "EBG structures with fractal topologies for ultra-wideband ground bounce noise suppression," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1365-1374, 2010.
doi:10.1163/156939310791958734

2. Yuan, C. P. and T. H. Chang, "Modal analysis of metal-stub photonic band gap structures in a parallel-plate waveguide," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601

3. Ding, T. H., Y. S. Li, D. C. Jiang, Y.-Z. Qu, and X. Yan, "Estimation method for simultaneous switching noise in power delivery network for high-speed digital system design ," Progress In Electromagnetics Research, Vol. 125, 79-95, 2012.
doi:10.2528/PIER12011202

4. Zhang, M. S., Y. S. Li, C. Jia, et al. "A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 307-309, 2007.
doi:10.1109/LMWC.2007.892992

5. Shi, L. F., C. Meng, L. Y. Cheng, and C.-S. Cai, "Coplanar EBG structure with meander-L bridge for ultra-wideband mitigation of SSN," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1248-1260, 2012.
doi:10.1080/09205071.2012.710726

6. Gao, M. J., L. S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using Quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

7. Chu, H., X. Q. Shi, and Y. X. Guo, "Ultra-wideband bandpass filter with a notch band using EBG array etched ground," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 203-209, 2011.
doi:10.1163/156939311794362786

8. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

9. Kim, S. H., T. T. Nguyen, and J. H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

10. Zhang, M. S., Y. S. Li, C. Jia, et al. "Simultaneous switching noise suppression in printed circuit boards using a compact 3-D cascaded electromagnetic-bandgap structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 10, 2200-2207, 2007.
doi:10.1109/TMTT.2007.906475

11. Wu, T.-L., C.-C. Wang, Y.-H. Lin, et al. "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 174-176, 2005.
doi:10.1109/LMWC.2005.844216

12. Qin, J. and O. M. Ramahi, "Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 9, 487-489, 2006.
doi:10.1109/LMWC.2006.880713

13. Wang, X., B. Wang, Y. Bi, et al. "A novel uniplanar compact photonic bandgap power plane with ultra-broadband suppression of ground bounce noise," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 267-268, 2006.
doi:10.1109/LMWC.2006.873509

14. Lin, D. B., K. C. Hung, C. T. Wu, and C.-S. Chang, "A serpent bridge electromagnetic bandgap structure for suppressing simultaneous switching noise," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 2-3, 213-220, 2009.
doi:10.1163/156939309787604535

15. Huang, C.-H. and T.-L. Wu, "Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 1, 21-30, 2013.
doi:10.1109/TCPMT.2012.2220139

16. De Paulis, F., L. Raimondo, and A. Orlandi, "Impact of shorting vias placement on embedded planar electromagnetic bandgap structures within multilayer printed circuit boards," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 7, 1867-1876, 2010.
doi:10.1109/TMTT.2010.2050029

17. Li, J., J. Mao, S. Ren, and H. Zhu, "Embedded planar EBG and shorting via arrays for SSN suppression in multilayer PCBs," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1430-1433, 2012.

18. Kim, K. H. and J. E. S. Aine, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications ," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, 2008.
doi:10.1109/TMTT.2007.912199

19. Wang, T. K., C. Y. Hsieh, H. H. Chuang, et al. "Design and modeling of a stopband-enhanced EBG structure using ground surface perturbation lattice for power/ground noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 2047-2054, 2009.
doi:10.1109/TMTT.2009.2025466

20. Qin, J., O. M. Ramahi, and V. Granatstein, "Novel planar electromagnetic bandgap structures for mitigation of switching noise and EMI reduction in high-speed circuits," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, 661-669, 2007.
doi:10.1109/TEMC.2007.902193