Vol. 42
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-10
Numerical Simulation of Gold Nanostructure Absorption Efficiency for Fiber-Optic Photoacoustic Generation
By
Progress In Electromagnetics Research Letters, Vol. 42, 209-223, 2013
Abstract
In many non-destructive testing and medical diagnostic applications, photoacoustic generation by optical fiber is an effective approach to meet the requirements of broad bandwidth and compact size. The energy absorption layer coated onto the fiber endface plays an important role in the conversion of laser energy into heat used to excite acoustic waves. Gold nanostructures are promising solutions to be utilized as energy absorption layers due to their capability of absorbing maximum optical energy at plasmon resonant frequencies. The appropriate selection of the organization and dimensions of the gold nanostructures is the key to achieving high absorption efficiency. Numerical modeling is an efficient way to predict the behavior of the system as a variation of select parameters. A 3D finite integral technique model was established to simulate the dependency of absorption efficiency on the organization and dimensions of the gold nanospheres and nanorods. The simulation results provided practical clues to the design and fabrication of fiber-optic photoacoustic generators.
Citation
Ye Tian, Hamzeh Jaradat, Nan Wu, Xiaotian Zou, Yang Zhang, Yuqian Liu, Alkim Akyurtlu, Chengyu Cao, and Xingwei Wang, "Numerical Simulation of Gold Nanostructure Absorption Efficiency for Fiber-Optic Photoacoustic Generation," Progress In Electromagnetics Research Letters, Vol. 42, 209-223, 2013.
doi:10.2528/PIERL13080101
References

1. Sposito, G., C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, "A review of non-destructive techniques for the detection of creep damage in power plant steels," NDT & E Int., Vol. 43, No. 7, 555-567, 2010.
doi:10.1016/j.ndteint.2010.05.012

2. Harrison, T., J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, "Combined photoacoustic and ultrasound biomicroscopy," Opt. Express, Vol. 17, No. 24, 22041-22046, 2009.
doi:10.1364/OE.17.022041

3. Foster, F. S., J. Mehi, M. Lukacs, D. Hirson, C. White, C. Chaggares, and A. Needles, "A new 15-50MHz array-based micro-ultrasound scanner for preclinical imaging," Ultrasound Med. Biol., Vol. 35, No. 10, 1700-1708, 2009.
doi:10.1016/j.ultrasmedbio.2009.04.012

4. Fomitchov, P. A., A. K. Kromine, and S. Krishnaswamy, "Photoacoustic probes for nondestructive testing and biomedical applications," Appl. Opt., Vol. 41, No. 22, 4451-4459, 2002.
doi:10.1364/AO.41.004451

5. Hou, Y., J.-S. Kim, S.-W. Huang, S. Ashkenazi, L. J. Guo, and M. O'Donnell, "Characterization of a broadband all-optical ultrasound transducer-from optical and acoustical properties to imaging," IEEE Trans. Ultrason., Ferroelectr., Freq. Control., Vol. 55, No. 8, 1867-1877, 2008.
doi:10.1109/TUFFC.2008.870

6. Biagi, E., F. Margheri, and D. Menichelli, "E±cient laser-ultrasound generation by using heavily absorbing films as targets," IEEE Trans. Ultrason., Ferroelectr., Freq. Control., Vol. 48, No. 6, 1669-1680, 2001.
doi:10.1109/58.971720

7. Hou, Y., J.-S. Kim, S. Ashkenazi, M. O'Donnell, and L. J. Guo, "Optical generation of high frequency ultrasound using two-dimensional gold nanostructure," Appl. Phys. Lett., Vol. 89, No. 9, 093901, 2006.
doi:10.1063/1.2344929

8. Tian, Y., N. Wu, K. Sun, X. Zou, and X. Wang, "Numerical simulation of fiber-optic photoacoustic generator using nanocomposite materials," J. Comput. Acoust., Vol. 21, No. 2, 1350002, 2003.
doi:10.1142/S0218396X13500021

9. Hou, Y., J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O'Donnell, "Broadband all-optical ultrasound transducers," Appl. Phys. Lett., Vol. 91, No. 7, 073507, 2007.
doi:10.1063/1.2771058

10. Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," J. Phys. Chem. B., Vol. 110, No. 14, 7238-7248, 2006.
doi:10.1021/jp057170o

11. Yang, X., E. W. Stein, S. Ashkenazi, and L. V. Wang, "Nanoparticles for photoacoustic imaging," Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., Vol. 1, No. 4, 360-368, 2009.
doi:10.1002/wnan.42

12. Wu, N., Y. Tian, X. Zou, V. Silva, A. Chery, and X. Wang, "High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite ," J. Opt. Soc. Am. B, Vol. 29, No. 8, 2016-2020, 2012.
doi:10.1364/JOSAB.29.002016

13. Gong, Y., K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-selective nanostructured plasmonic absorber by highly lossy interface mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903

14. Temple, T. L. and D. M. Bagnall, "Optical properties of gold and aluminium nanoparticles for silicon solar cell applications," J. Appl. Phys., Vol. 109, No. 8, 084343, 2011.
doi:10.1063/1.3574657

15. Nguyen, H., F. Sidiroglou, S. F. Collins, G. W. Baxter, A. Roberts, and T. J. Davis, "Periodic array of nanoholes on gold-coated optical ¯ber end-faces for surface plasmon resonance liquid refractive index sensing," Proc. SPIE, Vol. 8351, 835128, 2012.

16. Tian, Y., N. Wu, X. Zou, H. Felemban, C. Cao, and X. Wang, "Fiber-optic ultrasound generator using periodic gold nanopores fabricated by a focused ion beam," Opt. Eng., Vol. 52, No. 6, 065005, 2013.
doi:10.1117/1.OE.52.6.065005

17. Mie, G., "Contributions of the optics of turbid media, particularly of colloidal metal solutions," Ann. Phys., Vol. 25, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302

18. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, 1983B.

19. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

20. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

21. Kim, S., Y. Jung, G. H. Gu, J. S. Suh, S. M. Park, and S. Ryu, "Discrete dipole approximation calculations of optical properties of silver nanorod arrays in porous anodic alumina," J. Phys. Chem. C., Vol. 113, No. 37, 16321-16328, 2009.
doi:10.1021/jp811516s

22. Kane, Y., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE T. Antenn. Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

23. Jiang, H., J. Sabarinathan, T. Manifar, and S. Mittler, "3-D FDTD analysis of gold-nanoparticle-based photonic crystal on slab waveguide," J. Lightwave Technol., Vol. 27, No. 13, 2264-2270, 2009.
doi:10.1109/JLT.2008.2006577

24. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Model. El., Vol. 9, No. 4, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8

25. Wang, Z. B., B. S. Luk'yanchuk, W. Guo, S. P. Edwardson, D. J. Whitehead, L. Li, Z. Liu, and K. G. Watkins, "The influences of particle number on hot spots in strongly coupled metal nanoparticles chain," J. Chem. Phys., Vol. 128, No. 9, 094705-5, 2008.
doi:10.1063/1.2835598

26. Johnson, P. B. and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

27. Shulz, L. G., "The optical constants of silver, gold, copper and aluminum. I. The absorption coefficient k. And II. the index of refraction n," J. Opt. Soc. Am. A, Vol. 44, No. 5, 357-362, 362-367, 1954.

28. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, No. 7, 1099-1119, 1983.
doi:10.1364/AO.22.001099

29. CST Microwave Studio 2010, (http://www.cst.com/Content/Products/MWS/Overview.aspx).