Vol. 42
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-01
A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.
By
Progress In Electromagnetics Research Letters, Vol. 42, 97-107, 2013
Abstract
A type of closed exterior algebra in R3 under the cross product is revealed to hold between differential forms from the three Whittaker scalar potentials, associated with the fields of a moving electron. A special algebraic structure is revealed in the context of Clebsch reparametrization of these scalars, and a special prescription for the construction of permutation invariant electromagnetic fields is given as well as a superposition with parallel electric and magnetic components.
Citation
Theophanes E. Raptis, "A Closed Algebra of Clebsch Forms Derived from Whittaker Super-Potentials and Applications in Electromagnetic Research.," Progress In Electromagnetics Research Letters, Vol. 42, 97-107, 2013.
doi:10.2528/PIERL13071904
References

1. Whittaker, E. T., "On an expression of the electromagnetic field due to electrons by means of two scalar potential functions," Proc. London Math. Soc., Vol. 1, 367-372, 1904.
doi:10.1112/plms/s2-1.1.367

2. Bateman, H., "The solution of partial differential equations by means of definite integrals," Proc. London Math. Soc., Vol. 1, No. 1, 451-458, 1904.

3. Ruse, H. S., "The geometry of the electromagnetic six-vector, the electromagnetic energy and the Hertzian tensor," C. R. Congr. Internat. Math., Vol. 2, 232, 1936.

4. Ruse, H. S., "On Whittaker's electromagnetic scalar potentials," Quart. J. Math. Soc., Vol. 8, No. 1, 148-160, 1937.
doi:10.1093/qmath/os-8.1.148

5. Kawaguchi, H. and S. Murata, "Hertzian tensor potential which results in Lienard-Wiechert potential," J. Phys. Soc. Jap., Vol. 58, No. 3, 848-855, 1989.
doi:10.1143/JPSJ.58.848

6. Kawaguchi, H. and T. Honma, "On the super-potentials for Lienard-Wiechert potentials in far fields," J. Phys. A: Math. Gen., Vol. 25, 4437, 1992.
doi:10.1088/0305-4470/25/16/019

7. Kawaguchi, H. and T. Honma, "Superpotentials of Lienard-Wiechert potentials in far fields: The relativistic case," J. Phys. A: Math. Gen., Vol. 26, No. 17, 4431, 1993.
doi:10.1088/0305-4470/26/17/047

8. Kawaguchi, H. and T. Honma, "On a double fiber bundle structure of the Lienard-Wiechert superpotentials," J. Tech. Phys., Vol. 35, No. 1-2, 61-65, 1994.

9. Kawaguchi, H. and T. Honma, "On the electrodynamics of the Lienard-Wiechert superpotentials," J. Phys. A: Math. Gen., Vol. 28, No. 2, 469, 1995.
doi:10.1088/0305-4470/28/2/021

10. Marmanis, H., Analogy between the electromagnetic and hydrodynamic equations: Applications to turbulence, Ph.D.Thesis, Brown University, 1999.

11. Martins, A. A. and M. J. Pinheiro, "Fluidic electrodynamics: Approach to electromagnetic propulsion," Phys. Fluids, Vol. 21, 097103, 2001.

12. Bateman, H., Partial Differential Equations of Mathematical Physics, Cambridge Univ. Press, 1959.

13. Stern, D. P., "Euler potentials," Am. J. Phys., Vol. 38, No. 4, 494-501, 1970.
doi:10.1119/1.1976373

14. Asanov, G. S., "Clebsch representations and energy-momentum of classical electromagnetic and gravitational fields," Found. Phys., Vol. 10, No. 11-12, 855-863, 1980.
doi:10.1007/BF00708684

15. Marsden, J. and A. Weinstein, "Coadjoint orbits, vortices and Clebsch variables for incompressible fluids," Physica D, Vol. 7, 305-323, 1983.
doi:10.1016/0167-2789(83)90134-3

16. Ranada, A. F., "Interplay of topology and quantization: Topological energy quantization in a cavity," Phys. Lett. A, Vol. 310, 434, 2003.
doi:10.1016/S0375-9601(03)00443-2

17. Uehara, K., et al. "Non-transverse electromagnetic fields with parallel electric and magnetic fields," J. Phys. Soc. Jap., Vol. 58, No. 10, 3570-3575, 1989.
doi:10.1143/JPSJ.58.3570

18. Shimoda, K., et al. "Electromagnetic plane waves with parallel electric and magnetic fields E||B in free space," Am. J. Phys., Vol. 58, No. 4, 394, 1990.
doi:10.1119/1.16482

19. Gray, J. E., "Electromagnetic waves with E parallel to B," J. Phys. A: Math. Gen., Vol. 25, No. 20, 5373, 1992.
doi:10.1088/0305-4470/25/20/017