Vol. 55
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-04
32-Channel Optical Interleaver/Deinterleaver Using Fibonacci Quasi-Periodic Structures
By
Progress In Electromagnetics Research B, Vol. 55, 217-240, 2013
Abstract
The design of Interleaver/Deinterleavers using Fibonacci-class quasistructures is proposed. We introduce an optical passive configuration composed of Fibonacci quasistructures and circulators which acts as interleaver and deinterleaver. Odd and even channels are interleaved/deinterleaved with dense wavelength-division multiplexing (DWDM) multichannel filter based on Fibonacci quasi-periodic structures. We use Fibonacci based DWDM filters in order to separate the odd and even wavelength channels. These quasi-periodic structures, with different geometrical and physical parameters, act as DWDM filters that reflect even and odd wavelengths. A modified numerical approach is presented to design the Fibonacci based DWDM filter. We demonstrate that it is possible to optimize DWDM filter response by varying the parameters of the Fibonacci structure, such as generation number, Fibonacci order and optical lengths of the layers. The proposed filter structures can separate 32 DWDM channels with 0.8 nm spacing into two 16 DWDM channels with 1.6 nm spacing. In order to eliminate the crosstalk between the adjacent channels, we apply the refractive index profile apodization. These structures are useful for multiplexing/demultiplexing of a high numbers of the channels.
Citation
Saeed Golmohammadi, "32-Channel Optical Interleaver/Deinterleaver Using Fibonacci Quasi-Periodic Structures," Progress In Electromagnetics Research B, Vol. 55, 217-240, 2013.
doi:10.2528/PIERB13071701
References

1. Shine, B. and J. Bautista, "Interleavers make high-channel-count system economical," J. Lightwave Technol., Vol. 8, 140-144, 2000.

2. Dingel, B. B. and T. Aruga, "Properties of a novel noncascaded type, easy-to-design, ripple-free optical bandpass filter," J. Lightwave Technol., Vol. 17, 1461-1469, 1999.
doi:10.1109/50.779169

3. Yu, K., D. Lee, and O. Solgaard, "Tunable wave length multiplexer/demultiplexer using a MEMS Gires-Tournois interferometers,", 521-522, 2003.

4. Hsieh, C. H., R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett., Vol. 15, 242-244, 2003.
doi:10.1109/LPT.2002.806885

5. Yu, K. and O. Solgaard, "MEMS optical wavelength deinter-leaver with continuously variable channel spacing and center wave-length," IEEE Photon. Technol. Lett., Vol. 15, 425-427, 2003.
doi:10.1109/LPT.2002.807900

6. Zhang, J., L. Liu, Y. Zhou, and C. Zhou, "Dynamic characteristics of a novel flat-top interleaver filter," Optics, Vol. 114, 39-43, 2003.

7. Zhang, J., L. Liu, and Y. Zhou, "Novel and simple approach for designing lattice form interleaver filter," Optics Express, Vol. 11, 2221-2224, 2003.

8. Li, W.-Z., Q.-D. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE,, Vol. 4906, 73-80, 2002.
doi:10.1117/12.480552

9. Cao, S., J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K.-Y. Wu, and P. Xie, "Interleaver technology: Comparisons and applications requirements," J. Lightwave Technol., Vol. 22, 281-289, 2004.
doi:10.1109/JLT.2003.822832

10. Yu, K. and O. Solgaard, "Tunable optical interleaver based on Gires-Tournois interferometers with electrostatically actuated micromirror arrays," Annual Report SPRC, 2000-2001.

11. Dingel, B. B. and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system application," Optics Lett., Vol. 23, 1099-1101, 1998.
doi:10.1364/OL.23.001099

12. Chon, J., A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, "Integrated interleaver technology enables high performance in DWDM systems," Proc. Nat. Fiber Optic Eng. Conf., 1410-1420, Baltimore, MD, 2001.

13. Sargent, R. B. and N. A. O'Brien, "Review of thin films in telecommunications applications," Proc. Optical Interference Coating (OSA), WA2-1-3, Canada, 2001.

14. Chen, L. R., H. S. Loka, D. J. F. Cooper, P. W. E. Smith, R. Tam, and X. Gu, "Fabrication of transmission filters with single or multiple °attened passbands based on chirped Moire gratings," Electron. Lett.,, Vol. 35, 584-585, Apr. 1999.
doi:10.1049/el:19990406

15. Giles, C. R., "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol., Vol. 15, 1391-1404, 1997.
doi:10.1109/50.618357

16. Slavik, R. and S. LaRochelle, "Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings," Electron. Lett., Vol. 14, 1704-1706, 2002.

17. Kohmoto, M., B. Sutherland, and K. Iguchi, "Localization in optics: Quasi-periodic media," Phy. Rev. Lett., Vol. 58, 2436-2438, 1987.
doi:10.1103/PhysRevLett.58.2436

18. Sibilia, C., P. Masciulli, and M. Bertolotti, "Optical properties of quasi-periodic (self-similar) structures," Pure Appl. Opt., Vol. 7, 383-391, 1998.
doi:10.1088/0963-9659/7/2/028

19. Gellermann, W., M. Kohmoto, B. Sutherland, and P. C. Taylor, "Localization of light waves in fibonacci dielectric multilayers," Phy. Rev. Lett., Vol. 72, 633-636, 1994.
doi:10.1103/PhysRevLett.72.633

20. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Optics Communications, Vol. 198, 273, 2001.
doi:10.1016/S0030-4018(01)01531-0

21. Peng, R. W., M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, "Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063, 2002.
doi:10.1063/1.1468895

22. Macia, E., "Optical engineering with Fibonacci dielectric multilayers," Applied Physics Letters, Vol. 73, 3330, 1998.
doi:10.1063/1.122759

23. Macia, E., "Exploiting quasi-periodic order in the design of optical devices," Phy. Rev. B, Vol. 63, 205421, 2001.
doi:10.1103/PhysRevB.63.205421

24. Macia, E., "Optical applications of fibonacci dielectric multilayers," Ferroelectrics, Vol. 250, 401, 2001.
doi:10.1080/00150190108225111

25. Yang, X., Y. Liu, and X. Fu, "Transmission properties of light through the Fibonacci-class multilayers," J. Phy. Rev. B, Vol. 89, 4546, 1999.

26. Huang, X. Q., S. S. Jiang, R. W. Peng, and A. Hu, "Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers," J. Phy. Rev., Vol. 59, 245104-2, 2001.

27. Yariv, A., "Coupled-mode theory for guided-wave optics," J. Quantum Eelec., Vol. 9, 919-933, 1973.
doi:10.1109/JQE.1973.1077767

28. Mizrahi, V., P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, "Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides," Applied Physics Letters, Vol. 63, 1727-1729, 1993.
doi:10.1063/1.110696

29. De Sterke, C. M. and D. G. Salina, "Coupled-mode theory for light propagation through deep nonlinear gratings," Phy. Rev. E, Vol. 54, 1964, 1996.
doi:10.1103/PhysRevE.54.1969

30. Ennser, K., M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fibe gratings for optical communications," J. Quantum Eelec., Vol. 34, 770-778, 1998.
doi:10.1109/3.668763

31. Golmohammadi, S., M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, "Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures," Optics Express, Vol. 15, No. 17, 10520-10532, Aug. 20, 2007.
doi:10.1364/OE.15.010520