Vol. 33
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-09-12
MOEA/d -GO for Fragmented Antenna Design
By
Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013
Abstract
In this paper, a hybrid multiobjective evolutionary algorithm, MOEA/D-GO (Multiobjective Evolutionary Algorithm Based on Decomposition combined with Enhanced Genetic Operators), is proposed for fragment-type antenna design. It combines the ability and efficiency of MOEA/D to deal with multiobjective optimization problems with the speci c character of two-dimensional chromosome coding of genetic algorithm. And enhanced genetic operators are also introduced to generate new individuals. Numerical results of a set of six multiobjective 0/1 knapsack problems show that MOEA/D-GO with weighted sum decomposition approach outperforms original MOEA/D and MOEA/D-PR (MOEA/D combined with Path-Relinking operator). Then it's applied to optimize a CPW-fed monopole antenna to achieve band-notch characteristic. Both numerical and test results show that MOEA/D-GO is promising for solving multiobjective optimization problems about fragmented antenna.
Citation
Da-Wei Ding, and Gang Wang, "MOEA/d -GO for Fragmented Antenna Design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
doi:10.2528/PIERM13071610
References

1. Marler, R. T. and J. S. Arora, "Survey of multiobjective optimization methods for engineering," Structural Multidisciplinary Opt., Vol. 26, No. 6, 369-395, 2004.
doi:10.1007/s00158-003-0368-6

2. Jin, Z. S., H. Yang, X. J. Tang, and J. J. Mao, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," 2010 Third International Joint Conference on Computational Science and Optimization (CSO), Vol. 2, 259-262, Huangshan, China, 2010.
doi:10.1109/CSO.2010.100

3. Kim, G. J. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium 2006, 2087-2090, Albuquerque, NM, 2006.

4. Jon, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters 2006, Vol. 6, 447-449, 2007.
doi:10.1109/LAWP.2007.891962

5. Herscovici, N., J. Ginn, T. Donisi, and B. Tomasic, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium 2008, 1-4, San Diego, 2008.

6. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. on Antennas and Propag., Vol. 53, No. 10, 3280-3287, 2005.
doi:10.1109/TAP.2005.856340

7. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. on Antennas Propag., Vol. 52, No. 6, 1434-1445, 2004.
doi:10.1109/TAP.2004.825648

8. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. on Antennas and Propag., Vol. 52, No. 11, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

9. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. on Antennas and Propag., Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461

10. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Minimization of a rectangular patch using genetic algorithms," IEEE Antennas and Propagation Society Intelnational Symposium, Vol. 4, 1-4, Boston, MA, 2001.

11. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
doi:10.1049/el:20001452

12. Wang, X. P. and L. M. Cao, Genetic Algorithms-theory, Application and Program Realization, University of Xi'an Jiao Tong Press, Xi'an, 2002.

13. Kerkhoff, A. J., "Multi-objective optimization of antennas for ultra-wideband applications,", The University of Texas at Austin, May 2008.

14. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. on Evol. Comput., Vol. 11, No. 6, 712-731, 2007.
doi:10.1109/TEVC.2007.892759

15. Li, H. and H. Zhang, "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II," IEEE Trans. on Evol. Comput., Vol. 13, No. 2, 284-302, 2009.
doi:10.1109/TEVC.2008.925798

16. Ishibuchi, H., Y. Sakane, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization by NSGA-II and MOEA/D with large population," Proc. 2009 Int. Conf. Systems, Man, and Cybernetics, San Autonio, 1758-1763, San Antonio, TX, 2009.

17. Kafafy, A., A. Bounekkar, and S. Bonnevay, "Hybrid metaheuristics based on MOEA/D for 0/1 multiobjective knapsack problems: A comparative study," 2012 IEEE Congress on Evolutionary Computation (CEC), Vol. 1, No. 8, 10-15, 2012.

18. Ding, D., H. Wang, and G. Wang, "Evolutionary computation of multi-band antenna using multi-objective evolutionary algorithm based on decomposition," Lecture Notes in Computer Science (2011 LNCS), Vol. 7030, 383-390, 2011.
doi:10.1007/978-3-642-25255-6_49

19. Ding, D. and G. Wang, "Modified multiobjective evolutionary algorithm based on decomposition for antenna design," IEEE Trans. on Antennas and Propag., Vol. PP, No. 99, 2013.

20. Carvalho, R., R. R. Saldanha, B. N. Gomes, A. C. Lisboa, and A. X. Martins, "A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas," IEEE Trans. on Magnetics, Vol. 48, No. 2, 803-806, 2012.
doi:10.1109/TMAG.2011.2174348

21. Pal, S., B. Y. Qu, S. Das, and P. N. Suganthan, "Optimal synthesis of linear antenna arrays with multiobjective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.

22. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. on Evol. Comput., Vol. 3, No. 4, 257-271, 1999.
doi:10.1109/4235.797969

23. Jaszkiewicz, A., "On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - A comparative exper iment," IEEE Trans. on Evol. Comput., Vol. 6, No. 4, 402-412, 2002.
doi:10.1109/TEVC.2002.802873

24. Tong, W. and Z. R. Hu, "A CWP fed circular monopole antenna for ultra wideband wireless communications," IEEE Antennas and Propagation Society International Symposium 2005, Vol. 3A, 528-531, 2005.
doi:10.1109/APS.2005.1552304