Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-21
A Refined Two-Dimensional Nonlinear Chirp Scaling Algorithm for Geosynchronous Earth Orbit SAR
By
Progress In Electromagnetics Research, Vol. 143, 19-46, 2013
Abstract
Taking into account long signal propagation time, curved orbit and ``near-far-near'' slant range histories at apogee, a refined slant range model (RSRM) is presented for geosynchronous earth orbit synthetic aperture radar (GEO SAR) in this paper. Additional linear component and high order components are introduced into straight orbit assumption (SOA) model to describe relative motion during long signal propagation and curved orbit respectively. And the special slant range histories at apogee are considered through adding terms changing with the sign of Doppler rate. Then, based on RSRM under an ideal acquisition and ignoring nonideal factors (such as depolarization and attenuation effects), a refined two-dimensional nonlinear chirp scaling algorithm (RTNCSA) is proposed. Space-variant range cell migration (RCM) caused by range-variant effective velocities is corrected by refined range nonlinear chirp scaling algorithm, and the variable Doppler parameters in azimuth direction are equalized through refined azimuth nonlinear chirp scaling algorithm. Finally, RSRM is verified by 600-second direct signal received by a stationary receiver on a tall building from BeiDou navigation satellite, and RTNCSA is validated through simulated point array targets with resolution of 5 m and scene size of 150 km.
Citation
Tao Zeng, Wenfu Yang, Zegang Ding, Dacheng Liu, and Teng Long, "A Refined Two-Dimensional Nonlinear Chirp Scaling Algorithm for Geosynchronous Earth Orbit SAR," Progress In Electromagnetics Research, Vol. 143, 19-46, 2013.
doi:10.2528/PIER13071206
References

1. Tomiyasu, K., "Synthetic aperture radar in geosynchronous orbit," IEEE Antennas and Propagation Symp., Vol. 16, 42-45, 1978.

2. Tomiyasu, K. and J. L. Pacelli, "Synthetic aperture radar imaging from an inclined geosynchronous orbit," IEEE Trans. Geosci. Remote Sens., Vol. 21, No. 3, 324-329, 1983.
doi:10.1109/TGRS.1983.350561

3. Chini, M., L. Pulvirenti, and N. Pierdicca, "Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 3, 467-471, 2012.
doi:10.1109/LGRS.2011.2182495

4. Zribi, M., F. Kotti, Z. Lili-Chabaane, et al. "Soil texture estimation over a semiarid area using TerraSAR-X radar data," IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 3, 353-357, 2012.
doi:10.1109/LGRS.2011.2168379

5. Wendy, E., M. Sore, M. Alina, and C. Curti, "Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits," SPIE International Asia-Pacific Symposium, Remote Sensing of the Atmosphere, Environment and Space, 195-203, 2004.

6. Madsen, S. N., E. Wendy, L. D. DiDomenico, and L. John, "A geosynchronous synthetic aperture radar; for tectonic mapping, geosynchronous synthetic aperture radar; for tectonic mapping, geosynchronous synthetic aperture radar; for tectonic mapping," 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) , Vol. 1, 447-449, 2001.

7. Evans, T. L. and M. Costa, "Landcover classiFIcation of the lower Nhecolandia subregion of the Brazilian pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery," Remote Sensing of Environment, Vol. 128, 118-137, 2013.
doi:10.1016/j.rse.2012.09.022

8. NASA and JPL "Global earthquake satellite system: A 20-year plan to enable earthquake prediction," JPL Document, 2003.
doi:http://solidearth.jpl.nasa.gov/GESS/3123GESSRep2003.pdf

9. Hobbs, S. E. and D. Bruno, "Radar imaging from GEO: Chal-lenges and applications," Remote Sensing and Photogrammetry Society Annual Conference, 1-6, 2007.

10. Bruno, D. and S. E. Hobbs, "Radar imaging from geosynchronous orbit: Temporal decorrelation aspects," IEEE Transactions Geosci. Remote Sens., Vol. 48, No. 7, 2924-2929, 2010.
doi:10.1109/TGRS.2010.2042062

11. Hobbs, S. E., "GeoSAR summary of the group design project, MSc in Astronautics and Space Engineering 2005/06," Cranfield University, 1-20, 2006.

12. Mao, E. K., T. Long, T. Zeng, et al. "State-of-art of Geosynchronous SAR," Signal Processing (Xinhao Chuli), Vol. 28, No. 4, 451-462, 2012.

13. Liu, F., C. Hu, and T. Zeng, "A novel range migration algorithm of GEO SAR echo data," Proc. IGARSS, 1-4, Jul. 2010.

14. Yang, W., Y. Zhu, F. Liu, C. Hu, and Z. Ding, "Modified range migration algorithm in GEO SAR system," The 8th European Conference on Synthetic Aperture Radar, 708-711, 2010.

15. Bao, M., Y. Liao, Z. J. Tian, et al. "Imaging algorithm for GEO SAR based on series reversion," 2011 IEEE CIE International Conference on Radar, Vol. 2, 1493-1496, 2011.

16. Cheng, H., F. Liu, and W. Yang, "Modification of slant range model and imaging processing in GEO SAR," Proc. IGARSS, 4679-4682, Jul. 2010.

17. Hu, C., T. Zeng, Y. Zhu, and Z. Ding, "The accurate resolution analysis in Geosynchronous SAR," The 8th European Conference on Synthetic Aperture Radar, 925-928, 2010.

18. Bao, M., M. D. Xing, and Y. C. Li, "Chirp scaling algorithm for GEO SAR based on fourth-order range equation," Electronics Letters, Vol. 48, No. 1, 41-42, 2012.
doi:10.1049/el.2011.1892

19. Hu, C., Z. Liu, and T. Long, "An improved CS algorithm based on the curved trajectory in geosynchronous SAR," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 3, 795-808, 2012.
doi:10.1109/JSTARS.2012.2188096

20. Hu, C., T. Long, and Y. Tian, "An improved nonlinear chirp scaling algorithm based on curved trajectory in geosynchronous SAR," Progress In Electromagnetics Research, Vol. 135, 481-513, 2013.

21. Li, Z., C. Li, Z. Yu, et al. "Back projection algorithm for high resolution GEO-SAR image formation," 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 336-339, 2011.
doi:10.1109/IGARSS.2011.6048967

22. Tomiyasu, K., "Mitigation of rain and ice particle cross polarization at RF for dual circularly polarized waves," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1379-1385, 1998.
doi:10.1109/8.719983

23. Gao, Y. T., "The analysis and design of GEO SAR and the study of echo modeling," School of Information and Electronics, Beijing Institute of Technology, Beijing 2011.

24. Zeng, T., L. Liu, and Z. Ding, "Improved stepped-frequency SAR imaging algorithm with the range spectral-length extension Strategy," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , Vol. 5, No. 5, 1483-1494, 2012.
doi:10.1109/JSTARS.2012.2196681

25. Ding, Z, T. Long, T. Zeng, and Y. Zhu, "Deramp range migration processing for spaceborne spotlight synthetic aperture radar," Advances in Space Research, Vol. 41, No. 11, 1822-1826, 2008.
doi:10.1016/j.asr.2008.01.009

26. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254

27. Wong, F. W. and T. S. Yeo, "New applications of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412

28. Sun, G., X. Jiang, M. Xing, et al. "Focus improvement of highly squinted data based on azimuth nonlinear scaling," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 6, 2308-2322, 2011.
doi:10.1109/TGRS.2010.2102040

29. An, D., X. Huang, T. Jin, et al. "Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 9, 3595-3609, 2012.
doi:10.1109/TGRS.2012.2183606

30. Liu, F., "Image formation and change detection based on space-surface BiSAR systems," School of Information and Electronics, Beijing Institute of Technology, 2012.

31. Eldhuset, K., "A new fourth-order processing algorithm for spaceborne SAR," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 3, 824-835, 1998.
doi:10.1109/7.705890