Vol. 55
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-24
A Multi-Fidelity Based Adaptive Sampling Optimisation Approach for the Rapid Design of Double-Negative Metamaterials
By
Progress In Electromagnetics Research B, Vol. 55, 87-114, 2013
Abstract
Due to the increasing complexity of metamaterial geometric structures, direct optimisation of these designs using conventional approaches, such as Gradient-based and evolutionary algorithms, are often impractical and limited. This is in part due to the inherently high computational cost associated with running multiple expensive high-fidelity full-wave simulations, commonly required to optimise the constitutive parameters of a single metamaterial particle. In order to alleviate this issue, we propose an efficient optimisation approach which exploits the Co-Kriging methodology, such that we can successfully couple varying levels of discretisation and solver accuracy obtained from a 3d full wave numerical solver suite. In contrast to other optimisation strategies, we investigate the improvement in efficiency of optimisation through the use of the LOLA-Voronoi, in conjunction with Expected Improvement and the embedding of a trustregion framework within our optimisation algorithm, to accelerate the convergence of Co-Kriging. Finally, the effectiveness of the outlined algorithm will be demonstrated by a quantitative evaluation of the performance of optimised planar 2D negative index of refraction structures.
Citation
Patrick J. Bradley, "A Multi-Fidelity Based Adaptive Sampling Optimisation Approach for the Rapid Design of Double-Negative Metamaterials," Progress In Electromagnetics Research B, Vol. 55, 87-114, 2013.
doi:10.2528/PIERB13071003
References

1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

3. Bradley, P. J., "Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures," Progress In Electromagnetics Research B, Vol. 47, 1-17, 2013.

4. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902

5. Koziel, S., J. W. Bandler, and Q. S. Cheng, "Robust trust-region space-mapping algorithms for microwave design optimization," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 8, 2166-2174, Aug. 2010.
doi:10.1109/TMTT.2010.2052666

6. Koziel, S. and D. Echeverra Ciaurri, "Reliable simulation-driven design optimization of microwave structures using manifold mapping," Progress In Electromagnetics Research B, Vol. 26, 361-382, 2010.
doi:10.2528/PIERB10090202

7. Krige, D. G., "A statistical approach to some basic mine valuation problems on the witwatersrand," problems on the witwatersrand, Metallurgical and Mining Society of South Africa, Vol. 52, No. 6, 119-139, Dec. 1951.

8. Broomhead, D. S. and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, Vol. 2, 321-355, 1988.

9. Box, G. E. P. and N. R. Draper, "Empirical Model-building and Response Surface," John Wiley & Sons, Inc., 1986.

10. Jones, D. R., M. Schonlau, and W. J. Welch, "Effcient global optimization of expensive black-box functions," Journal of Global Optimization, Vol. 13, No. 4, 455-492, Dec. 1998.
doi:10.1023/A:1008306431147

11. Jones, D. R., "A taxonomy of global optimization methods based on response surfaces," Journal of Global Optimization, Vol. 21, No. 4, 345-383, 2001.
doi:10.1023/A:1012771025575

12. Forrester, A., A. Sobester, and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, Wiley, 2008.
doi:10.1002/9780470770801

13. Forrester, A. I. J., A. Sbester, and A. J. Keane, "Multifidelity ptimization via surrogate modelling," Proceedings of the Royal Sociery A, Vol. 463, No. 2088, 3251-3269, Dec. 2007.
doi:10.1098/rspa.2007.1900

14. Deschrijver, D., K. Crombecq, H. M. Nguyen, and T. Dhaene, "Adaptive sampling algorithm for macromodeling of parameterized S-parameter responses," IEEE Trans. on Microwave Theory and Techniques, Vol. 59, No. 1, 39-45, Jan. 2011.
doi:10.1109/TMTT.2010.2090407

15. Koziel, S., L. Leifsson, I. Couckuyt, and T. Dhaene, "Robust variable-fidelity optimization of microwave filters using Co-Kriging and trust regions," Microwave and Optical Technology Letters, Vol. 55, No. 4, 765-769, 2013.
doi:10.1002/mop.27447

16. Liu, R., A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Applied Physics Letters, Vol. 90, No. 26, 263504-263504-3, 2007.
doi:10.1063/1.2752120

17. Zhou, J., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, Dec. 2006.
doi:10.1364/OL.31.003620

18. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Near-field interactions in electric inductive-capacitive resonators for metamaterials," Journal of Physics D: Applied Physics, Vol. 45, No. 48, 485101, 2012.
doi:10.1088/0022-3727/45/48/485101

19. Liu, H., T. Li, S. M. Wang, and S. N. Zhu, "Magnetic plasmon modes introduced by the coupling effect in metamaterials," 2008 International Workshop on Metamaterials, 50-52, 2008.
doi:10.1109/META.2008.4723529

20. Kante, B., S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, "Controlling plasmon hybridization for negative refraction metamaterials," Phys. Rev. B, Vol. 79, 075121, Feb. 2009.
doi:10.1103/PhysRevB.79.075121

21. Zhou, J., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters, Vol. 88, No. 22, 221103-221103-3, 2006.
doi:10.1063/1.2208264

22. Zhou, J., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, 041101, Jan. 2006.
doi:10.1103/PhysRevB.73.041101

23. Zaoui, W. S., K. Chen, W. Vogel, and M. Berroth, "Low loss broadband polarization independent fishnet negative index metamaterial at 40 GHz," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 10, No. 3, 245-250, 2012.
doi:10.1016/j.photonics.2011.02.003

24. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, Sep. 2005.
doi:10.1103/PhysRevLett.95.137404

25. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 7, No. 2, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005

26. Shen, N.-H., L. Zhang, T. Koschny, B. Dastmalchi, M. Kafesaki, and C. M. Soukoulisand C. M. Soukoulis, "Discontinuous design of negative index metamaterials based on mode hybridization," Applied Physics Letters, Vol. 101, 081913, 2012.
doi:10.1063/1.4748361

27. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, Mar. 2005.
doi:10.1103/PhysRevE.71.036617

28. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

29. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from re°ection and transmitted ¯elds by enforcing causality," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 10, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473

30. Barroso, J. J. and U. C. Hasar, "Constitutive parameters of a ," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 33, No. 2, 237-244, 2012.
doi:10.1007/s10762-011-9869-3

31. Hsieh, F.-J. and W.-C. Wang, "Full extraction methods to retrieve e®ective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models," Journal of Applied Physics, Vol. 112, No. 6, 064907, 2012.
doi:10.1063/1.4752753

32. Alu, A., "Restoring the physical meaning of metamaterial constitutive parameters," Phys. Rev. B, Vol. 83, 081102, Feb. 2011.
doi:10.1103/PhysRevB.83.081102