Vol. 42
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-09
Design of a High Power, High Efficiency Ka-Band Helix Traveling-Wave Tube
By
Progress In Electromagnetics Research Letters, Vol. 42, 187-199, 2013
Abstract
The design and analysis of a high power and high efficiency helix traveling-wave tube operating in the Ka-band are presented. First, the double-slotted helix slow-wave structure is proposed and employed in the interaction circuit. Then, negative phase-velocity tapering technology is used to improve electronic efficiency. From our calculations, when the design voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this tube can produce average output power over 800 W ranging from 28 GHz to 31 GHz. The corresponding conversion efficiency varies from 21.83% to 24.16%, and the maximum output power is 892 W at 29 GHz.
Citation
Lu-Wei Liu, Yan-Yu Wei, Yabin Zhang, Guoqing Zhao, Zhaoyun Duan, Wen-Xiang Wang, Yu-Bin Gong, and Minghua Yang, "Design of a High Power, High Efficiency Ka-Band Helix Traveling-Wave Tube," Progress In Electromagnetics Research Letters, Vol. 42, 187-199, 2013.
doi:10.2528/PIERL13070907
References

1. Chong, C. K., J. A. Davis, R. H. Le Borgne, M. L. Ramay, R. J. Stolz, R. N. Tamashiro, J. P. Vaszari, and X. Zhai, "Development of high-power Ka-band and Q-band helix-TWTs," IEEE Trans. Electron Devices, Vol. 52, No. 5, 653-659, May 2005.
doi:10.1109/TED.2005.845842

2. Qiu, J. X., B. Levush, J. Pasour, A. Katz, C. M. Armstrong, D. R. Whaley, J. Tucek, K. Kreischer, and D. Gallagher, "Vacuum tube amplifiers," IEEE Microw. Mag., Vol. 10, No. 7, 38-51, Dec. 2009.
doi:10.1109/MMM.2009.934517

3. Komm, D. S., R. T. Benton, H. C. Limburg, W. L. Menninger, and X. L. Zhai, "Advances in space TWT efficiencies," IEEE Trans. Electron Devices, Vol. 48, No. 1, 174-176, Jan. 2001.
doi:10.1109/16.892186

4. Chong, C. K. and W. L. Menninger, "Last advancements in high-power millimeter-wave helix TWTs," IEEE Trans. on Plasma Science, Vol. 38, No. 6, 1227-1238, Jun. 2010.
doi:10.1109/TPS.2010.2041940

5. Chorney, P., M. E. Hines, and R. J. Madore, "High power slow wave circuit,", USA Patent No. 3519964, Jul. 1968.

6. Pchelnikov, Y. N., "Old know --- how in helix TWT development in the USSR," AIP Conference Proceeding, Vol. 691, No. 1, 112-122, Dec. 2003.
doi:10.1063/1.1635110

7. Kuntzmann, J. C., R. Nazet, and L. Tarreau, Traveling wave tube comprising a sleeve cut with grooves and its manufacturing process, USA Patent No. 4572985, Feb. 1986.

8. Dayton, J. A., G. T. Mearini, H. Chen, and C. L. Kory, "Diamonded-studded helical traveling wave tube," IEEE Trans. Electron Devices, Vol. 52, No. 5, 695-701, May 2005.
doi:10.1109/TED.2005.845863

9. Henry, D., N. Santonja, and S. Wartski, "Brazed-helix technology for 30 GHz power TWTs," 1986 International Electron Devices Meeting Technical Digest, Vol. 36, 505-507, 1986.

10. Wartski, S., D. Henry, and N. Santonjia, "Development of a brazed-helix TWT for future Ka-band earth stations delivering 200W in the band 27.5-30 GHz," 1988 International Electron Devices Meeting Technical Digest, 366-369, 1988.
doi:10.1109/IEDM.1988.32832

11. Gong, Y., Y. Wei, W. Wang, and Z. Duan, "Analysis of a novel brazed helix tape slow wave structure with high power capability," 30th IEEE International Conference on Plasma Science, 177 2003.

12. Han, Y., Y. W. Liu, Y. G. Ding, and P. K. Liu, "Improvement of heat dissipation capability of slow-wave structure using two assembling methods," IEEE Electron Devices Letters, Vol. 29, No. 8, 955-956, Aug. 2008.
doi:10.1109/LED.2008.2001350

13. Han, Y., Y. Liu, Y. Ding, P. Liu, and C. Lu, "Thermal analysis of a helix TWT slow-wave structure," IEEE Trans. Electron Devices, Vol. 55, No. 5, 1269-1272, May 2008.
doi:10.1109/TED.2008.919536

14. Han, Y., Y. Liu, Y. Ding, and P. Liu, "Reliability analysis of thermal conduction of slow-wave structures assembled with different methods," IEEE Trans. Electron Devices, Vol. 9, No. 2, 265-268, May 2009.

15. Jung, S. S., A. V. Soukhov, B. F. Jia, and G. S. Park, "Positive phase-velocity tapering of broadband helix traveling-wave tubes for efficiency enhancement," Applied Physics Letters, Vol. 80, No. 16, 3000-3002, Apr. 2002.
doi:10.1063/1.1471573

16. Ghosh, T. K., A. J. Challis, A. Jacob, D. Bowler, and R. G. Carter, "Improvement in performance of broadband helix traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 55, No. 2, 668-673, Feb. 2008.
doi:10.1109/TED.2007.913006

17. Srivastava, V., R. G. Carter, B. Ravinder, A. K. Sina, and S. N. Joshi, "Design of helix slow-wave structure for high efficiency TWTs," IEEE Trans. Electron Devices, Vol. 47, No. 12, 2438-2443, Dec. 2000.
doi:10.1109/16.887034

18. Ghosh, T. K., A. J. Challis, A. Jacob, and D. Bowler, "Design of helix pitch profile for broadband traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 56, No. 5, 1135-1140, May 2009.
doi:10.1109/TED.2009.2015137

19. Gong, Y., Z. Duan, Y. Wang, Y. Wei, H. Yin, and W. Wang, "Suppression of in-band power holes in helix traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 58, No. 5, 1556-1561, May 2011.
doi:10.1109/TED.2011.2109960

20. Wei, Y. Y., L. W. Liu, Y. B. Gong, X. Xu, H. R. Yin, L. N. Yue, Y. Liu, J. Xu, and W. X. Wang, Helical slow-wave structure, USA Patent Application, No. 13/345, 121, Jan. 2012.

21. Liu, L., Y. Wei, X. Xu, F. Shen, G. Zhao, M. Huang, T. Tang, W. X. Wang, and Y. Gong, "A novel helical slow-wave structure or millimeter wave traveling wave tube," 5th Global Symposium on Millimeter Waves Conference, 312-315, 2012.

22. Liu, L., Y. Wei, J. Xu, Z. Lu, H. Yin, L. Yue, H. Gong, G. Zhao, Z. Duan, W. Wang, and Y. Gong, "A novel slotted helix slow-wave structure for millimeter-wave traveling-wave tube," Progress In Electromagnetics Research, Vol. 135, 347-362, 2013.

23. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-694, May 2005.
doi:10.1109/TED.2005.845798

24. Ansoft Corp., , Ansoft HFSS user's reference, Online Available: http://www.ansoft.com.cn/.

25. Ghosh, S., P. K. Jain, and B. N. Basu, "Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures," IEEE Trans. Electron Devices, Vol. 44, No. 7, 1158-1168, Jul. 1997.
doi:10.1109/16.595945

26. Liu, S. G., H. F. Li, W. X. Wang, and Y. L. Mo, Introduction of Microwave Electronics, 105, National Defence Industry Press, Beijing, China, Sep. 1985.

27. CST Corp., , CST MWS tutorials, Online Available: http://www.cst-china.cn/.

28. CST Corp., , CST PS tutorials, Online Available: http://www.cst-china.cn/.

29. Chong, C. K., R. C. Dawson, J. W. Forster, R. H. Le Borgne, M. L. Ramay, R. J. Stolz, and R. N. Tamashiro, "Development of 500W Ka-band helix-TWT and 200W Q-band helix-TWT for communications applications," Proc. IEEE International Vacuum Electronics Conference, 191-192, 2008.

30. Bosch, E., R. Christ, M. Lefevre, J. Racamier, H. Rupp, J. Tribout, and J. Jarno, "New 500W Ka band TWT's," Proc. IEEE International Vacuum Electronics Conference, 70-71, 2009.