Institute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Institute for Advanced Biomedical Technologies
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Chieti
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
"G. D'Annunzio" University
Italy
HomepageInstitute for Advanced Biomedical Technologies and Department of Neuroscience and Imaging
Italy
Homepage1. Clarke, J., M. Hatridge, and M. Moble, "SQUID-detected magnetic resonance imaging in microtesla fields," Annual Review of Biomedical Engineering, Vol. 9, 389-413, 2007.
doi:10.1146/annurev.bioeng.9.060906.152010
2. Trahms, L. and M. Burghoff, "NMR at very low fields," Magnetic Resonance Imaging, Vol. 28, 1244-1250, 2010.
doi:10.1016/j.mri.2010.02.004
3. McDermott, R., S. Lee, B. T. Haken, A. H. Trabesinger, A. Pines, and J. Clarke, "Microtesla MRI with a superconducting quantum interference device," Proceeding of the National Academy of Sciences of the United States of America, Vol. 101, 7857-7861, 2004.
doi:10.1073/pnas.0402382101
4. Trabesinger, A. H., R. McDermott, S. Lee, M. Muck, J. Clarke, and A. Pines, "SQUID-detected liquid state NMR in microtesla fields," The Journal of Physical Chemistry A, Vol. 108, 957-963, 2004.
doi:10.1021/jp035181g
5. Moble, M., S. I. Han, W. R. Myers, S. K. Lee, N. Kelso, M. Hatridge, A. Pines, and J. Clarke, "SQUID-detected microtesla MRI in the presence of metal," Journal of Magnetic Resonance, Vol. 179, 146-151, 2006.
doi:10.1016/j.jmr.2005.11.005
6. Busch, H., M. Hatridge, M. Moble, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT," Magnetic Resonance in Medicine, Vol. 67, 1138-1145, 2012.
doi:10.1002/mrm.24177
7. Zotev, V. S., A. N. Matlashov, P. L. Volegov, I. M. Savukov, M. A. Espy, J. C. Mosher, J. J. Gomez, R. H. Kraus Jr. "Microtesla MRI of the human brain combined with MEG," Journal of Magnetic Resonance, Vol. 194, 115-120, 2008.
doi:10.1016/j.jmr.2008.06.007
8. Magnelind, P. E., J. J. Gomez, A. N. Matlashov, T. Owens, J. H. Sandin, P. L. Volegov, and M. A. Espy, "Co-registration of interleaved MEG and ULF-MRI using a 7 channel low-Tc system," IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 456-460, 2011.
doi:10.1109/TASC.2010.2088353
9. Vesanen, P. T., J. O. Nieminen, K. C. J. Zevenhoven, J. Dabek, L. T. Parkkonen, A. V. Zhdanov, J. Luomahaara, J. Hassel, J. Penttila, J. Simola, A. I. Ahonen, J. P. Makela, and R. J. Il-moniemi, "Hybrid ultra-low-field-MRI and magnetoencephalography system bassed on a commercial whole-head neuromagnetometer," Magnetic Resonance in Medicine, Vol. 69, 1795-1804, 2013.
doi:10.1002/mrm.24413
10. Zotev, V. S., A. N. Matlashov, P. L. Volegov, A. V. Urbaitis, M. A. Espy, and R. H. Kraus Jr., "SQUID-based instrumentation for ultralow-field MRI," Superconductor Science and Technology, Vol. 20, S367-S371, 2007.
doi:10.1088/0953-2048/20/11/S13
11. Bernarding, J., G. Buntkowsky, S. Macholl, S. Hartwig, M. Burghoff, and L. Trahms, "J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields," Journal of the American Chemical Society, Vol. 128, 714-715, 2006.
doi:10.1021/ja055273e
12. Hartwig, S., M. Voigt, H. J. Scheer, H. H. Albrecht, M. Burghoff, and L. Trahms, "Nuclear magnetic relaxation in water revisited," The Journal of Chemical Physics, Vol. 135, 054201, 2011.
doi:10.1063/1.3623024
13. Pannetier-Lecoeur, M., C. Fermon, N. Bizierre, J. Scola, and A. L. Walliang, "RF response of superconducting-GMR mixed sensors, application to NQR," IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, 598-601, 2007.
doi:10.1109/TASC.2007.898056
14. Sergeeva-Chollet, N., H. Dyvorne, J. Dabek, Q. Herreros, H. Polovy, G. Le Goff, G. Cannies, M. Pannetier-Lecour, and C. Fermon, "Low field MRI with magnetoresistive mixed sensor," Journal of Physics Conference Series, Vol. 303, 012055, 2011.
doi:10.1088/1742-6596/303/1/012055
15. Pannetier, M., C. Fermon, G. Le Goff, J. Simola, and E. Kerr, "Femtotesla magnetic field measurements with magnetoresistive sensors," Science, Vol. 304, 1648-1650, 2004.
doi:10.1126/science.1096841
16. Pannetier, M., C. Fermon, G. Legoff, J. Simola, E. Kerr, M. Welling, R. J. Wijngaarden, J. Rinke, and , "Ultra-sensitive field sensors --- An alternative to SQUIDs," IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 892-895, 2005.
doi:10.1109/TASC.2005.850104
17. Dyvorne, H., J. Scola, C. Fermon, J. F. Jacquinot, and M. Pannetier-Lecoeur, "Flux transformers made of commercial high critical temperature superconducting wires," Review of Scientific Instruments, Vol. 79, 025107, 2008.
doi:10.1063/1.2885610
18. Grover, F. W., "Inductance Calculations, Working Formulas and Tables," Dover, New York, 1973.
19. Granata, C., A. Vettoliere, S. Rombetto, C. Nappi, M. Russo "Performances of compact integrated superconducting magnetometers for biomagnetic imaging," Journal of Applied Physics, Vol. 104, 073905, 2008.
20. Rombetto, S., A. Vettoliere, C. Granata, M. Russo, and C. Nappi, "Sensitivity and spatial resolution of square loop SQUID magnetometers," Physica C: Superconductivity, Vol. 468, 2328-2331, 2008.
doi:10.1016/j.physc.2008.08.005
21. Myers, W., D. Slichter, M. Hatridge, S. Busch, M. Moble, R. McDermott, A. Trabesinger, and J. Clarke, "Calculated signal to noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 ¹T to 1.5 T," Journal of Magnetic Resonance, Vol. 186, 182-192, 2007.
doi:10.1016/j.jmr.2007.02.007
22. Seton, H. C., J. M. S. Hutchison, and D. M. Bussel, "Gradiometer pick-up coil design for a low field SQUID-MRI system," Magnetic Resonance Materials in Physics, Biology and Medicine, Vol. 8, 116-120, 1999.
23. Matlashov, A. N., V. S. Zotev, R. H. Kraus, Jr., H. Sandin, A. V. Urbaitis, P. L. Volegov, and M. A. Espy, "SQUIDs for magnetic resonance imaging at ultra-low magnetic field," PIERS Online, Vol. 5, No. 5, 466-470, 2009.
doi:10.2529/PIERS090310140213
24. Burghoff, M., H. H. Albrecht, S. Hartwig, I. Hilschenz, R. Korber, T. Sander ThÄommes, H. J. Scheer, J. Voigt, and L. Trahms, "SQUID system for MEG and low field magnetic resonance," Metrology and Measurements Systems, Vol. 16, 371-375, 2009.
25. Nieminen, J. O., P. T. Vesanen, K. C. J. Zevenhoven, J. Dabek, J. Hassel, J. Luomahaara, J. S. Penttila, and R. J. Ilmoniemi, "Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils," Journal of Magnetic Resonance, Vol. 212, 154-160, 2011.
26. Hilbert, C., J. Clarke, T. Sleator, and E. L. Hahn, "Nuclear quadrupole resonance detected at 30MHz with a dc supercon-ducting quantum interference device," Applied Physics Letters, Vol. 47, 637-639, 1985.
doi:10.1063/1.96042