Vol. 142
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-08
NMR Detection at 8.9 mT with a GMR Based Sensor Coupled to a Superconducting Nb Flux Transformer
By
Progress In Electromagnetics Research, Vol. 142, 389-408, 2013
Abstract
This study presents NMR signal detection by means of a superconducting channel consisting of a Nb surface detection coil inductively coupled to a YBCO mixed sensor. The NMR system operates at a low field (8.9 mT) in a magnetically shielded room suitable for magnetoencephalographic (MEG) recordings. The main field is generated by a compact solenoid and the geometry of the pickup coil has been optimized to provide high spatial sensitivity in the NMR field of view. The Nb detection coil is coupled to the mixed sensor through a Nb input coil. The mixed sensor consists of a superconducting YBCO loop with 2-μm constriction above which two Giant Magneto Resistance sensors are placed in a half-bridge configuration to detect changes of the bridge voltage as a function of the flux through the YBCO loop. The sensitivity of the receiving channel is calibrated experimentally. The measured spatial sensitivity is in agreement with the simulations and is ~10 times better than that of the stand-alone mixed sensor. A NMR echo at 375 kHz shows a SNR only a factor 4 smaller than a tuned room temperature coil tightly wound around the sample, with a noise level which is a factor 3 better than for the volume coil. Our results suggest that mixed sensors are suitable for the integration of low-field MRI and MEG in a hybrid apparatus, where MEG and MRI would be recorded by SQUIDs and mixed sensors, respectively.
Citation
Raffaele Sinibaldi, Cinzia De Luca, Jaakko O. Nieminen, Angelo Galante, Vittorio Pizzella, Piero Sebastiani, Myriam Pannetier-Lecoeur, Antonietta Manna, Piero Chiacchiaretta, Gabriella Tamburro, Antonello Sotgiu, Claude Fermon, Gian Luca Romani, and Stefania Della Penna, "NMR Detection at 8.9 mT with a GMR Based Sensor Coupled to a Superconducting Nb Flux Transformer," Progress In Electromagnetics Research, Vol. 142, 389-408, 2013.
doi:10.2528/PIER13070404
References

1. Clarke, J., M. Hatridge, and M. Moble, "SQUID-detected magnetic resonance imaging in microtesla fields," Annual Review of Biomedical Engineering, Vol. 9, 389-413, 2007.
doi:10.1146/annurev.bioeng.9.060906.152010

2. Trahms, L. and M. Burghoff, "NMR at very low fields," Magnetic Resonance Imaging, Vol. 28, 1244-1250, 2010.
doi:10.1016/j.mri.2010.02.004

3. McDermott, R., S. Lee, B. T. Haken, A. H. Trabesinger, A. Pines, and J. Clarke, "Microtesla MRI with a superconducting quantum interference device," Proceeding of the National Academy of Sciences of the United States of America, Vol. 101, 7857-7861, 2004.
doi:10.1073/pnas.0402382101

4. Trabesinger, A. H., R. McDermott, S. Lee, M. Muck, J. Clarke, and A. Pines, "SQUID-detected liquid state NMR in microtesla fields," The Journal of Physical Chemistry A, Vol. 108, 957-963, 2004.
doi:10.1021/jp035181g

5. Moble, M., S. I. Han, W. R. Myers, S. K. Lee, N. Kelso, M. Hatridge, A. Pines, and J. Clarke, "SQUID-detected microtesla MRI in the presence of metal," Journal of Magnetic Resonance, Vol. 179, 146-151, 2006.
doi:10.1016/j.jmr.2005.11.005

6. Busch, H., M. Hatridge, M. Moble, W. Myers, T. Wong, M. Muck, K. Chew, K. Kuchinsky, J. Simko, and J. Clarke, "Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT," Magnetic Resonance in Medicine, Vol. 67, 1138-1145, 2012.
doi:10.1002/mrm.24177

7. Zotev, V. S., A. N. Matlashov, P. L. Volegov, I. M. Savukov, M. A. Espy, J. C. Mosher, J. J. Gomez, R. H. Kraus Jr. "Microtesla MRI of the human brain combined with MEG," Journal of Magnetic Resonance, Vol. 194, 115-120, 2008.
doi:10.1016/j.jmr.2008.06.007

8. Magnelind, P. E., J. J. Gomez, A. N. Matlashov, T. Owens, J. H. Sandin, P. L. Volegov, and M. A. Espy, "Co-registration of interleaved MEG and ULF-MRI using a 7 channel low-Tc system," IEEE Transactions on Applied Superconductivity, Vol. 21, No. 3, 456-460, 2011.
doi:10.1109/TASC.2010.2088353

9. Vesanen, P. T., J. O. Nieminen, K. C. J. Zevenhoven, J. Dabek, L. T. Parkkonen, A. V. Zhdanov, J. Luomahaara, J. Hassel, J. Penttila, J. Simola, A. I. Ahonen, J. P. Makela, and R. J. Il-moniemi, "Hybrid ultra-low-field-MRI and magnetoencephalography system bassed on a commercial whole-head neuromagnetometer," Magnetic Resonance in Medicine, Vol. 69, 1795-1804, 2013.
doi:10.1002/mrm.24413

10. Zotev, V. S., A. N. Matlashov, P. L. Volegov, A. V. Urbaitis, M. A. Espy, and R. H. Kraus Jr., "SQUID-based instrumentation for ultralow-field MRI," Superconductor Science and Technology, Vol. 20, S367-S371, 2007.
doi:10.1088/0953-2048/20/11/S13

11. Bernarding, J., G. Buntkowsky, S. Macholl, S. Hartwig, M. Burghoff, and L. Trahms, "J-coupling nuclear magnetic resonance spectroscopy of liquids in nT fields," Journal of the American Chemical Society, Vol. 128, 714-715, 2006.
doi:10.1021/ja055273e

12. Hartwig, S., M. Voigt, H. J. Scheer, H. H. Albrecht, M. Burghoff, and L. Trahms, "Nuclear magnetic relaxation in water revisited," The Journal of Chemical Physics, Vol. 135, 054201, 2011.
doi:10.1063/1.3623024

13. Pannetier-Lecoeur, M., C. Fermon, N. Bizierre, J. Scola, and A. L. Walliang, "RF response of superconducting-GMR mixed sensors, application to NQR," IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, 598-601, 2007.
doi:10.1109/TASC.2007.898056

14. Sergeeva-Chollet, N., H. Dyvorne, J. Dabek, Q. Herreros, H. Polovy, G. Le Goff, G. Cannies, M. Pannetier-Lecour, and C. Fermon, "Low field MRI with magnetoresistive mixed sensor," Journal of Physics Conference Series, Vol. 303, 012055, 2011.
doi:10.1088/1742-6596/303/1/012055

15. Pannetier, M., C. Fermon, G. Le Goff, J. Simola, and E. Kerr, "Femtotesla magnetic field measurements with magnetoresistive sensors," Science, Vol. 304, 1648-1650, 2004.
doi:10.1126/science.1096841

16. Pannetier, M., C. Fermon, G. Legoff, J. Simola, E. Kerr, M. Welling, R. J. Wijngaarden, J. Rinke, and , "Ultra-sensitive field sensors --- An alternative to SQUIDs," IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 892-895, 2005.
doi:10.1109/TASC.2005.850104

17. Dyvorne, H., J. Scola, C. Fermon, J. F. Jacquinot, and M. Pannetier-Lecoeur, "Flux transformers made of commercial high critical temperature superconducting wires," Review of Scientific Instruments, Vol. 79, 025107, 2008.
doi:10.1063/1.2885610

18. Grover, F. W., "Inductance Calculations, Working Formulas and Tables," Dover, New York, 1973.

19. Granata, C., A. Vettoliere, S. Rombetto, C. Nappi, M. Russo "Performances of compact integrated superconducting magnetometers for biomagnetic imaging," Journal of Applied Physics, Vol. 104, 073905, 2008.

20. Rombetto, S., A. Vettoliere, C. Granata, M. Russo, and C. Nappi, "Sensitivity and spatial resolution of square loop SQUID magnetometers," Physica C: Superconductivity, Vol. 468, 2328-2331, 2008.
doi:10.1016/j.physc.2008.08.005

21. Myers, W., D. Slichter, M. Hatridge, S. Busch, M. Moble, R. McDermott, A. Trabesinger, and J. Clarke, "Calculated signal to noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 ¹T to 1.5 T," Journal of Magnetic Resonance, Vol. 186, 182-192, 2007.
doi:10.1016/j.jmr.2007.02.007

22. Seton, H. C., J. M. S. Hutchison, and D. M. Bussel, "Gradiometer pick-up coil design for a low field SQUID-MRI system," Magnetic Resonance Materials in Physics, Biology and Medicine, Vol. 8, 116-120, 1999.

23. Matlashov, A. N., V. S. Zotev, R. H. Kraus, Jr., H. Sandin, A. V. Urbaitis, P. L. Volegov, and M. A. Espy, "SQUIDs for magnetic resonance imaging at ultra-low magnetic field," PIERS Online, Vol. 5, No. 5, 466-470, 2009.
doi:10.2529/PIERS090310140213

24. Burghoff, M., H. H. Albrecht, S. Hartwig, I. Hilschenz, R. Korber, T. Sander ThÄommes, H. J. Scheer, J. Voigt, and L. Trahms, "SQUID system for MEG and low field magnetic resonance," Metrology and Measurements Systems, Vol. 16, 371-375, 2009.

25. Nieminen, J. O., P. T. Vesanen, K. C. J. Zevenhoven, J. Dabek, J. Hassel, J. Luomahaara, J. S. Penttila, and R. J. Ilmoniemi, "Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils," Journal of Magnetic Resonance, Vol. 212, 154-160, 2011.

26. Hilbert, C., J. Clarke, T. Sleator, and E. L. Hahn, "Nuclear quadrupole resonance detected at 30MHz with a dc supercon-ducting quantum interference device," Applied Physics Letters, Vol. 47, 637-639, 1985.
doi:10.1063/1.96042