Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-02
Electromagnetic Isolation of a Microstrip by Embedding in a Spatially Variant Anisotropic Metamaterial
By
Progress In Electromagnetics Research, Vol. 142, 243-260, 2013
Abstract
The near-field surrounding devices can be arbitrarily sculpted if they are placed inside a spatially variant anisotropic metamaterial (SVAM). Our SVAMs are low loss because they do not contain metals and are extraordinarily broadband, working from DC up to a cutoff. In the present work, a microstrip transmission line was isolated from a metal object placed in close proximity by embedding it in an SVAM so that the field avoided the object. Our paper begins by outlining a simple finite-difference modeling approach for studying transmission lines embedded in SVAMs. We then present our design and experimental results to confirm the concept.
Citation
Raymond C. Rumpf, Cesar R. Garcia, Harvey H. Tsang, Julio E. Padilla, and Michael D. Irwin, "Electromagnetic Isolation of a Microstrip by Embedding in a Spatially Variant Anisotropic Metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.
doi:10.2528/PIER13070308
References

1. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, London; New York, 2010.

2. Gravelle, L. B. and P. F. Wilson, "EMI/EMC in printed circuit boards - A literature review," IEEE Transactions on Electromagnetic Compatibility, Vol. 34, No. 2, 109-116, 1992.
doi:10.1109/15.135623

3. Hill, D. A., K. H. Cavcey, and R. T. Johnk, "Crosstalk between microstrip transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 314-321, 1994.
doi:10.1109/15.328861

4. Isaacs, Jr., J. and N. Strakhov, "Crosstalk in uniformly coupled lossy transmission lines," Bell Syst. Tech. J., Vol. 52, 101-115, 1973.
doi:10.1002/j.1538-7305.1973.tb03186.x

5. Xiao, F., W. Liu, and Y. Kami, "Analysis of crosstalk between finite-length microstrip lines: FDTD approach and circuit-concept modeling," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 573-578, 2001.
doi:10.1109/15.974637

6. Kim, J. H. and D. C. Park, "A simple method of crosstalk reduction by metal filled via hole fence in bent transmission lines on PCBs," 17th International Zurich Symposium on Electromagnetic Compatibility, EMC-Zurich 2006, 363-366, 2006.
doi:10.1109/EMCZUR.2006.214946

7. Ponchak, G. E., D. Chun, J.-G. Yook, and L. P. Katehi, "Experimental verification of the use of metal filled via hole fences for crosstalk control of microstrip lines in LTCC packages," IEEE Transactions on Advanced Packaging, Vol. 24, No. 1, 76-80, 2001.
doi:10.1109/6040.909628

8. Sharma, R. Y., T. Chakravarty, and A. B. Bhattacharyya, "Transient analysis of microstrip-like interconnections guarded by ground tracks," Progress In Electromagnetics Research, Vol. 82, 189-202, 2008.
doi:10.2528/PIER08021601

9. Mallahzadeh, A. R., A. Ghasemi, S. Akhlaghi, B. Rahmati, and R. Bayderkhani, "Crosstalk reduction using step shaped transmission line," Progress In Electromagnetics Research C, Vol. 12, 139-148, 2010.
doi:10.2528/PIERC09121606

10. Wu, J. H., J. Scholvin, J. A. del Alamo, and K. A. Jenkins, "A Faraday cage isolation structure for substrate crosstalk suppression," IEEE Microwave and Wireless Components Letters, Vol. 11, 410-412, 2001.
doi:10.1109/7260.959312

11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.

12. Capolino, F., Theory and Phenomena of Metamaterials, 1st edition, CRC Press LLC, 2009.

13. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.

14. Khurgin, J. B. and G. Sun, "Scaling of losses with size and wavelength in nanoplasmonics and metamaterials," Applied Physics Letters, Vol. 99, 211106-1-211106-3, 2011.

15. Ponizovskaya, E., M. Nieto-Vesperinas, and N. Garcia, "Losses for microwave transmission in metamaterials for producing left-handed materials: The strip wires," Applied physics Letters, Vol. 81, No. 23, 4470-4472, 2002.
doi:10.1063/1.1527982

16. Rumpf, R. C., Design and Optimization of Nano-optical Elements by Coupling Fabrication to Optical Behavior, University of Central Florida, 2006.

17. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006

18. Poh, S., W. Chew, and J. Kong, "Approximate formulas for line capacitance and characteristic impedance of microstrip line," IEEE Trans. Microwave Theory and Tech., Vol. 29, No. 2, 135-142, 1981.
doi:10.1109/TMTT.1981.1130310

19. Niklasson, G. A., C. Granqvist, and O. Hunderi, "Effective medium models for the optical properties of inhomogeneous materials," Applied Optics, Vol. 20, No. 1, 26-30, 1981.
doi:10.1364/AO.20.000026

20. Jaeger, H. M. and S. R. Nagel, "Physics of the granular state," Science, Vol. 255, No. 5051, 1523-1531, 1992.
doi:10.1126/science.255.5051.1523

21. Aspnes, D., "Local-field effects and effective-medium theory: A microscopic perspective," American Journal of Physics, Vol. 50, No. 8, 704, 1982.
doi:10.1119/1.12734

22. Guo, S. and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, Vol. 11, No. 2, 167-175, 2003.
doi:10.1364/OE.11.000167

23. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001.
doi:10.1364/OE.8.000173

24. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

25. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, No. 14, 15263-15274, 2012.
doi:10.1364/OE.20.015263