Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-27
Broadband Millimeterwave Metamaterial Absorber Based on Embedding of Dual Resonators
By
Progress In Electromagnetics Research, Vol. 142, 625-638, 2013
Abstract
Metamaterial based electromagnetic wave absorbers provide perfect absorption only over a narrow bandwidth. In this paper, broadband response is achieved through embedding of one resonator inside another in each unit cell of the metamaterial absorber lattice. These two resonators are oriented in the same direction to achieve reduced coupling between them realizing two absorption frequencies close to each other in order to broaden the effective bandwidth. Paper presents such an absorber at 77 GHz with a bandwidth of 8 GHz with the peak absorption of greater than 98%. The absorber is fabricated on 125 μm thin and flexible polyimide substrate by patterning gold thin film in the shape of two split ring resonators as the metamaterial unit cell. The bandwidth is enhanced by more than a factor of two compared to what could be achieved from a metamaterial with single resonator structure.
Citation
Pramod Singh, Shideh Kabiri Ameri, Liu Chao, Mohammed Nurul Afsar, and Sameer Sonkusale, "Broadband Millimeterwave Metamaterial Absorber Based on Embedding of Dual Resonators," Progress In Electromagnetics Research, Vol. 142, 625-638, 2013.
doi:10.2528/PIER13070209
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-207402-4, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Noor, A. and Z. Hu, "Metamaterial dual polarised resistive hilbert curve array radar absorber," IET Microw. Antennas Propag., Vol. 4, 667-673, 2010.
doi:10.1049/iet-map.2009.0047

1. Takimoto, Y., "Considerations on millimeter-wave indoor LAN," Topical Symposium on Millimeter Waves, 111-114, 1997.

4. Maier, T. and H. Bruckl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optics Letters, Vol. 34, 3012-3014, 2009.
doi:10.1364/OL.34.003012

5. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, No. 517.
doi:10.1038/ncomms1528

6. Takase, Y., O. Hashimoto, K. Matsumoto, and T. Kumada, "Suppression of electromagnetic radiation noise from wireless modules in the millimeter-wave band by means of alumina containing carbon black," Electronics and Communications in Japan, Vol. 93, 25-33, 2010.
doi:10.1002/ecj.10216

7. Iijima, Y., Y. Hoqjou, and R. Sato, "Millimeter wave absorber using M-type hexagonal ferrite," IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 547-549, 2000.

8. Korolev, K. A., J. S. McCloy, and M. N. Afsar, "Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter waves," J. Appl. Phys., Vol. 111, 07E113-1-07E113-3, 2012.

9. Wen, Q.-Y., H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111-1-241111-3, 2009.

10. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102-1-225102-5, 2010.

11. Mason, J. A., S. Smith, and D. Wasserman, "Strong absorption and selective thermal emission from a midinfrared metamaterial," Appl. Phys. Lett., Vol. 98, 241105-1-241105-3, 2011.

12. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104-1-251104-3, 2010.

13. Soh, T., A. Kondo, M. Toyota, and O. Hashimoto, "A basic study of millimeter-wave absorber for two frequency bands using transparent resistive films," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 149-154, 2003.

14. Singh, P. K., K. A. Korolev, M. N. Afsar, and S. Sonkusale, "Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate," Appl. Phys. Lett., Vol. 99, 264101-1-264101-4, 2011.

15. Gu, S., J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," J. Appl. Phys., Vol. 108, 064913-2-064913-6, 2010.

16. Sun, L. K., H. F. Cheng, Y. J. Zhou, and J. Wang, "Broadband metamaterial absorber based on coupling resistive frequency selective surface," Optics Express, Vol. 20, 4675-4678, 2012.
doi:10.1364/OE.20.004675

17. Wakatsuchi, H., S. Greedy, C. Christopoulos, and J. Paul, "Customised broadband metamaterial absorbers for arbitrary polarisation," Optics Express, Vol. 18, 22187-22198, 2010.
doi:10.1364/OE.18.022187

18. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 1-4, 2012.

19. Hendrickson, J., J. Guo, B. Zhang, W. Buchwald, and R. Soref, "Wideband perfect light absorber at midwave infrared using multiplexed metal structures," Optics Letters, Vol. 37, 371-373, 2012.
doi:10.1364/OL.37.000371

20. Bouchon, P., C. Koechlin, F. Pardo, R. Haidar, and J.-L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Optics Letters, Vol. 37, 1038-1040, 2012.
doi:10.1364/OL.37.001038

21. Koechlin, C., P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Haidar, "Analytical description of subwavelength plasmonic MIM resonators and of their combination," Optics Express, Vol. 21, 7025-7032, 2013.
doi:10.1364/OE.21.007025

22. Guo, H., N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, "Resonance hybridization in double split-ring resonator metamaterials," Optics Express, Vol. 19, 12095-12101, 2007.
doi:10.1364/OE.15.012095

23. Aydin, K., I. M. Pryce, and H. A. Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Optics Express, Vol. 18, 13407-13417, 2010.
doi:10.1364/OE.18.013407