Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-28
Compact Electromagnetic Absorbers for Frequencies Below 1 GHz
By
Progress In Electromagnetics Research, Vol. 143, 67-86, 2013
Abstract
A novel Frequency Selective Surface (FSS) configuration is proposed for the design of polarization-insensitive metamaterial absorbers operating below 1 GHz, where the first resonances of small commercial enclosures appear. The novel FSS shows a strong subwavelength response, enhanced by the dielectric substrate, which allows the design of compact planar absorbers with excellent angular and polarization stability.
Citation
Rodolfo Araneo, Giampiero Lovat, and Salvatore Celozzi, "Compact Electromagnetic Absorbers for Frequencies Below 1 GHz ," Progress In Electromagnetics Research, Vol. 143, 67-86, 2013.
doi:10.2528/PIER13070206
References

1. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.

2. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

3. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701

4. Nie, X.-C. and N. Yuan, "Accurate modeling of monopole antennas in shielded enclosures with apertures," Progress In Electromagnetics Research, Vol. 79, 251-262, 2008.
doi:10.2528/PIER07100403

5. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining e®ectiveness of metallic cavities with apertures by combining," Progress In Electromagnetics Research, Vol. 74, 82-112, 2007.
doi:10.2528/PIER07041905

6. Wang, Y. J., W. J. Koh, and C. K. Lee, "Coupling cross section and shielding effectiveness measurements on a coaxial cable by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research, Vol. 47, 61-73, 2004.
doi:10.2528/PIER03100101

7. Araneo, R. and S. Celozzi, "Analysis of the shielding performance of ferromagnetic screens," IEEE Trans. Magn., Vol. 39, No. 2, 1046-1052, Mar. 2003.
doi:10.1109/TMAG.2003.808604

8. Marvin, A. C., J. F. Dawson, S. Ward, L. Dawson, J. Clegg, and A. Weissenfeld, "A proposed new definition and measurement of the shielding effect of equipment enclosures," IEEE Trans. Electromagn. Compat., Vol. 46, No. 3, 459-468, Aug. 2004.
doi:10.1109/TEMC.2004.831901

9. Celozzi, S., "New figures of merit for the characterization of the performance of shielding enclosures," IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 142, Feb. 2004.
doi:10.1109/TEMC.2004.823627

10. Araneo, R. and S. Celozzi, "Toward a definition of the shielding e®ectiveness in the time-domain," Proc. IEEE Electromagn. Compat. Symp., 113-117, Aug. 2013..

11. Iqbal, M. N., F. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.

12. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER03052601

13. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

14. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

15. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902

16. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301

17. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, No. 6, 063702-063702-5, 2011.
doi:10.1063/1.3638118

18. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 706-716, Aug. 2011.
doi:10.1109/TEMC.2010.2081367

19. Araneo, R. and and G. Lovat, "An effcient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 294-304, Mar. 2008.
doi:10.1109/TEMC.2008.919031

20. Araneo, R. and G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 274-283, Mar. 2009.
doi:10.1109/TEMC.2008.2010456

21. Vallecchi, A. and A. G. Schuchinsky, "Entwined planar spirals for artificial surfaces," IEEE Antennas Wireless Propagat. Lett., Vol. 9, 994-997, Jul. 2010.
doi:10.1109/LAWP.2010.2086424

22. Vallecchi, A. and A. G. Schuchinsky, "Artificial surfaces formed by tessellations of intertwined spirals," Proc. 5th European Conf. Antennas Propag., Vol. 7, 1846-1848, Apr. 2011.

22. Peterson, A. F., S. L. Ray, and R. Mittra, "Computation Methods for Electromagnetics," IEEE Press, 1998.

24. Mosig, J. R., "Integral equation technique for Microwave and Millimeter Wave Passive Structures," Numerical Techniques for Microwave and Millimeter Wave Passive Structures, 1989.

25. Bladel, J. G. V., "Electromagnetic Fields," IEEE Press, , 2007.

26. Celozzi, S., R. Araneo, and G. Lovat, "Electromagnetic Shielding," Wiley-IEEE, 2008.

27. Jordan, K. E., G. R. Richter, and P. Sheng, "An effcient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," J. Comput. Phys., Vol. 63, No. 1, 222-235, Mar. 1986.
doi:10.1016/0021-9991(86)90093-8

28. Weideman, J. A. C., "Computation of the complex error function," SIAM J. Numer. Anal., Vol. 31, No. 5, 1497-1518, Oct. 1994.
doi:10.1137/0731077

29. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Microwave Guided Wave Lett., Vol. 10, No. 5, 168-170, 2000.
doi:10.1109/75.850366

30. Lovat, G., P. Burghignoli, and R. Araneo, "Effcient evaluation of the three-dimensional periodic Green's function through the Ewald method," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 9, 2069-2075, 2008.
doi:10.1109/TMTT.2008.2002232

31. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1988.
doi:10.1109/TAP.1982.1142818

32. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, No. 10, 1448-1455, Oct. 1993.
doi:10.1109/8.247786

33. Dunavant, D. A., "High degree effcient symmetrical Gaussian quadrature rules for the triangle," Intern. J. Num. Meth. Engin., Vol. 21, 1129-1148, Jun. 1985.
doi:10.1002/nme.1620210612

34. "Microwave Studio Computer Simulation Technology (CST),", 2013.
doi:Microwave Studio Computer Simulation Technology (CST)

35. "HFSS (ANSYS),", 2013.
doi:http://www.ansys.com

36. Wu, K., "Frequency Selective Surfaces and Grid Array," Wiley, 1995.

37. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.

38. Cheng, Y., Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization insensitive metamaterial absorber based on lumped elements," J. Appl. Phys, Vol. 111, No. 4, 044902-044902-4, 2012.

39. Araneo, R., "Extraction of broadband passive lumped equivalent circuits of microwave discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 393-401, 2006.

40. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.

41. Araneo, R., C. Wang, X. Gu, S. Celozzi, and J. Drewniak, "Di®erential signalling in PCBs: Modeling and validation of dielectric losses and effects of discontinuities," Proc. IEEE Electromagn. Compat. Symp., Vol. 2, 933-938, Aug. 2001.

42. Araneo, R., C. Wang, X. Gu, J. Drewniak, and S. Celozzi, "E±cient modeling of discontinuities and dispersive media in printed transmission lines," IEEE Trans. Magn., Vol. 38, No. 2, 765-768, Mar. 2002.