1. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.
2. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803
3. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701
4. Nie, X.-C. and N. Yuan, "Accurate modeling of monopole antennas in shielded enclosures with apertures," Progress In Electromagnetics Research, Vol. 79, 251-262, 2008.
doi:10.2528/PIER07100403
5. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining e®ectiveness of metallic cavities with apertures by combining," Progress In Electromagnetics Research, Vol. 74, 82-112, 2007.
doi:10.2528/PIER07041905
6. Wang, Y. J., W. J. Koh, and C. K. Lee, "Coupling cross section and shielding effectiveness measurements on a coaxial cable by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research, Vol. 47, 61-73, 2004.
doi:10.2528/PIER03100101
7. Araneo, R. and S. Celozzi, "Analysis of the shielding performance of ferromagnetic screens," IEEE Trans. Magn., Vol. 39, No. 2, 1046-1052, Mar. 2003.
doi:10.1109/TMAG.2003.808604
8. Marvin, A. C., J. F. Dawson, S. Ward, L. Dawson, J. Clegg, and A. Weissenfeld, "A proposed new definition and measurement of the shielding effect of equipment enclosures," IEEE Trans. Electromagn. Compat., Vol. 46, No. 3, 459-468, Aug. 2004.
doi:10.1109/TEMC.2004.831901
9. Celozzi, S., "New figures of merit for the characterization of the performance of shielding enclosures," IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 142, Feb. 2004.
doi:10.1109/TEMC.2004.823627
10. Araneo, R. and S. Celozzi, "Toward a definition of the shielding e®ectiveness in the time-domain," Proc. IEEE Electromagn. Compat. Symp., 113-117, Aug. 2013..
11. Iqbal, M. N., F. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the EMC performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.
12. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
doi:10.2528/PIER03052601
13. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
14. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702
15. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902
16. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer Jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301
17. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, No. 6, 063702-063702-5, 2011.
doi:10.1063/1.3638118
18. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 706-716, Aug. 2011.
doi:10.1109/TEMC.2010.2081367
19. Araneo, R. and and G. Lovat, "An effcient MoM formulation for the evaluation of the shielding effectiveness of rectangular enclosures with thin and thick apertures," IEEE Trans. Electromagn. Compat., Vol. 50, No. 2, 294-304, Mar. 2008.
doi:10.1109/TEMC.2008.919031
20. Araneo, R. and G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 274-283, Mar. 2009.
doi:10.1109/TEMC.2008.2010456
21. Vallecchi, A. and A. G. Schuchinsky, "Entwined planar spirals for artificial surfaces," IEEE Antennas Wireless Propagat. Lett., Vol. 9, 994-997, Jul. 2010.
doi:10.1109/LAWP.2010.2086424
22. Vallecchi, A. and A. G. Schuchinsky, "Artificial surfaces formed by tessellations of intertwined spirals," Proc. 5th European Conf. Antennas Propag., Vol. 7, 1846-1848, Apr. 2011.
22. Peterson, A. F., S. L. Ray, and R. Mittra, "Computation Methods for Electromagnetics," IEEE Press, 1998.
24. Mosig, J. R., "Integral equation technique for Microwave and Millimeter Wave Passive Structures," Numerical Techniques for Microwave and Millimeter Wave Passive Structures, 1989.
25. Bladel, J. G. V., "Electromagnetic Fields," IEEE Press, , 2007.
26. Celozzi, S., R. Araneo, and G. Lovat, "Electromagnetic Shielding," Wiley-IEEE, 2008.
27. Jordan, K. E., G. R. Richter, and P. Sheng, "An effcient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," J. Comput. Phys., Vol. 63, No. 1, 222-235, Mar. 1986.
doi:10.1016/0021-9991(86)90093-8
28. Weideman, J. A. C., "Computation of the complex error function," SIAM J. Numer. Anal., Vol. 31, No. 5, 1497-1518, Oct. 1994.
doi:10.1137/0731077
29. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Microwave Guided Wave Lett., Vol. 10, No. 5, 168-170, 2000.
doi:10.1109/75.850366
30. Lovat, G., P. Burghignoli, and R. Araneo, "Effcient evaluation of the three-dimensional periodic Green's function through the Ewald method," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 9, 2069-2075, 2008.
doi:10.1109/TMTT.2008.2002232
31. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1988.
doi:10.1109/TAP.1982.1142818
32. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, No. 10, 1448-1455, Oct. 1993.
doi:10.1109/8.247786
33. Dunavant, D. A., "High degree effcient symmetrical Gaussian quadrature rules for the triangle," Intern. J. Num. Meth. Engin., Vol. 21, 1129-1148, Jun. 1985.
doi:10.1002/nme.1620210612
34. "Microwave Studio Computer Simulation Technology (CST),", 2013.
doi:Microwave Studio Computer Simulation Technology (CST)
35. "HFSS (ANSYS),", 2013.
doi:http://www.ansys.com
36. Wu, K., "Frequency Selective Surfaces and Grid Array," Wiley, 1995.
37. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
38. Cheng, Y., Y. Wang, Y. Niea, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization insensitive metamaterial absorber based on lumped elements," J. Appl. Phys, Vol. 111, No. 4, 044902-044902-4, 2012.
39. Araneo, R., "Extraction of broadband passive lumped equivalent circuits of microwave discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 393-401, 2006.
40. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.
41. Araneo, R., C. Wang, X. Gu, S. Celozzi, and J. Drewniak, "Di®erential signalling in PCBs: Modeling and validation of dielectric losses and effects of discontinuities," Proc. IEEE Electromagn. Compat. Symp., Vol. 2, 933-938, Aug. 2001.
42. Araneo, R., C. Wang, X. Gu, J. Drewniak, and S. Celozzi, "E±cient modeling of discontinuities and dispersive media in printed transmission lines," IEEE Trans. Magn., Vol. 38, No. 2, 765-768, Mar. 2002.