Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-05
Multi-Band Circular Polarizer Using Archimedean Spiral Structure Chiral Metamaterial with Zero and Negative Refractive Index
By
Progress In Electromagnetics Research, Vol. 141, 645-657, 2013
Abstract
A novel multi-band circular polarizer is proposed by using a bilayered chiral metamaterial (CMM). The unit cell of the CMM is composed of four Archimedean spiral structures, which are twisted 90° to each other in the upper and bottom layers. When a linearly polarized wave incidents on this circular polarizer, the simulation result shows that the transmission of right circularly polarized (RCP) wave can be obtained at 14.28 GHz and 15.96 GHz, while the transmission of left circularly polarized (LCP) wave is emitted at 15.3 GHz and 16.88 GHz. The retrieval results reveal that the effective refractive index of the CMM closes to zero or negative at the vicinity of four resonances. The experimental results are in good agreement with the numerical results.
Citation
Liyun Xie, He-Lin Yang, Xiaojun Huang, and Zhenjun Li, "Multi-Band Circular Polarizer Using Archimedean Spiral Structure Chiral Metamaterial with Zero and Negative Refractive Index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
doi:10.2528/PIER13063003
References

1. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.

2. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.

3. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. Gansel, J., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031

7. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

8. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Opt. Express, Vol. 18, No. 14, 14553-14567, 2010.
doi:10.1364/OE.18.014553

9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M.Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593-1595, 2010.
doi:10.1364/OL.35.001593

10. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.
doi:10.1088/1464-4258/11/11/114003

11. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

12. Cao, T. and M. J. Cryan, "Circular dichroism in planar nonchiral metamaterial made of elliptical nanoholes array," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1275-1282, 2012.
doi:10.1080/09205071.2012.697849

13. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.
doi:10.1364/OL.36.001653

14. Huang, C., J. Zhao, T. Jiang, and Y. Feng, "Asymmetric transmission of linearly polarized electromagnetic wave through chiral metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8/9, 1192-1202, 2012.
doi:10.1080/09205071.2012.710568

15. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

16. Song, K., X. P. Zhao, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90o-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14/15, 1967-1976, 2012.
doi:10.1080/09205071.2012.723673

17. Ma, X., C. Huang, M. B. Pu, Y. Q.Wang, Z. Y. Zhao, C. T.Wang, and X. G. Luo, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901-161904, 2012.
doi:10.1063/1.4756901

18. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104-4, 2009.
doi:10.1103/PhysRevB.79.121104

19. Zarifi, D., M. Soleimani, and V. Nayyeri, "A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2/3, 251-263, 2012.
doi:10.1163/156939312800030767

20. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173

21. Ma, X., C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express,, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050

22. Dong, J., J. Zhou, T. Koschny, and C. Soukoulis, "Bi-layer cross chiral structure with strong optical activity and negative refractive index," Optics Express, Vol. 17, No. 16, 14172-14179, 2009.
doi:10.1364/OE.17.014172

23. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6), 2009.
doi:10.1103/PhysRevB.79.035407

24. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401

25. Plum, E., V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett., Vol. 90, No. 22, 223113, 2007.
doi:10.1063/1.2745203

26. Zarifi, D., M. Soleimani, and V. Nayyeri, "Dual-band multiband chiral metamaterial structures with strong optical activity and negative refraction index," IEEE Antennas and Wireless Progagation Letters, Vol. 11, 334-337, 2012.
doi:10.1109/LAWP.2012.2191261

27. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, No. 3, 031111, 2011.
doi:10.1063/1.3615054

28. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(3), 2010.

29. Ranga, Y., L. Matekovits, S. G. Hay, and T. S. Bird, "An anisotropic impedance surface for dual-band linear-to-circular transmission polarization convertor," IEEE International Workshop on Antenna Technology, (IWAT2013), 47-50, 2013.

30. Zhou, B., H. Li, X. Y. Zou, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

31. Nejadmalayeri, A. and P. R. Herman, "Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett., Vol. 31, 2987-2989, 2006.
doi:10.1364/OL.31.002987

32. Nasimuddin, X. Qing, Z. N. Chen, and , "Compact circularly polarized symmetric-slit microstrip antennas," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 1, 285-288, 2011.
doi:10.1109/TAP.2010.2090468

33. Sze, J., K. L. Wong, and C. C. Huang, "Coplanar waveguide-fed square slot antenna for broadband circularly polarized radiation," IEEE Trans. on Antennas and Propagat., Vol. 51, No. 8, 2141-2144, 2003.
doi:10.1109/TAP.2003.815421

34. Kasabegoudar, V. G. and K. J. Vinoy, "A broadband suspended microstrip antenna for circular polarization," Progress In Electromagnetics Research, Vol. 90, 353-368, 2009.
doi:10.2528/PIER09012901

35. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

36. Liseikina, T. and A. Macchi, "Features of ion acceleration by circularly polarized laser pulses," Appl. Phys. Lett., Vol. 91, No. 17, 171502, 2007.
doi:10.1063/1.2803318

37. Huang, C., X. L. Ma, M. B. Pu, G. W. Yi, Y. Q. Wang, and X. G. Luo, "Dual-band 90o polarization rotator using twisted split ring resonators array," Optics Communications, Vol. 291, 345, 2013.
doi:10.1016/j.optcom.2012.10.046

38. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157, 2009.
doi:10.1038/nphoton.2009.4