Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-13
An Impulse Sampling Approach for Efficient 3D TLM-Based Adjoint Sensitivity Analysis
By
Progress In Electromagnetics Research, Vol. 142, 485-503, 2013
Abstract
We present a memory efficient algorithm for the estimation of adjoint sensitivities with the transmission line modeling (TLM) method. Our algorithm manipulates the local scattering matrices to drastically reduce the required storage for problems with lossy dielectric discontinuities. Only one impulse per cell is stored for two dimensional simulations and three impulses per cell are stored for three dimensional simulations. The required memory storage for our impulse sampling approach is only 10% of that of the original TLM-based adjoint sensitivity analysis. The technique is illustrated through two examples including the sensitivity analysis of a dielectric resonator antenna.
Citation
Osman S. Ahmed, Mohamed H. Bakr, and Xun Li, "An Impulse Sampling Approach for Efficient 3D TLM-Based Adjoint Sensitivity Analysis," Progress In Electromagnetics Research, Vol. 142, 485-503, 2013.
doi:10.2528/PIER13062805
References

1. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504

2. Chung, Y., J. Ryu, C. Cheon, I. Park, and S. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis --- Part I: FETD case," IEEE Trans. Magn.,, Vol. 37, 3289-3293, 2001.
doi:10.1109/20.952597

3. Chung, Y., C. Cheon, I. Park, and S. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis --- Part II: FDTD case," IEEE Trans. Magn., Vol. 37, 3255-3259, 2001.
doi:10.1109/20.952589

4. Radwan, A. G., M. H. Bakr, and N. K. Nikolova, "Transient adjoint sensitivities for discontinuities with gaussian material distributions," Progress In Electromagnetics Research B, Vol. 27, 1-19, 2011.
doi:10.2528/PIERL11080104

5. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient ransmission line modeling sensitivity analysis exploiting rubber cells," Progress In Electromagnetics Research B, Vol. 11, 223-243, 2009.
doi:10.2528/PIERB08111502

6. Ahmed, O. S., M. H. Bakr, and X. Li, "A memory-efficient implementation of TLM-based adjoint sensitivity analysis," IEEE Trans. Antennas Propagat., Vol. 60, 2122-2125, 2012.
doi:10.1109/TAP.2012.2186237

7. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time-domain transmission line modeling with fixed structured grids," IEEE Trans. Microw. Theory Tech., Vol. 52, 554-559, 2004.
doi:10.1109/TMTT.2003.821908

8. Nikolova, N. K., H. W. Tam, and M. H. Bakr, "Sensitivity analysis with the FDTD method on structured grids," IEEE Trans. Microw. Theory Tech., Vol. 52, 1207-1216, 2004.
doi:10.1109/TMTT.2004.825710

9. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for frequency domain TLM problems with conducting boundaries," IEEE Microw. and Wireless Components Lett., Vol. 13, 408-410, 2003.
doi:10.1109/LMWC.2003.811665

10. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE Trans. Microw. Theory Tech., Vol. 50, 2751-2758, 2002.
doi:10.1109/TMTT.2002.805131

11. Webb, J. P., "Design sensitivity of frequency response in 3-D finite-element analysis of microwave devices," IEEE Trans. Magn., Vol. 38, 1109-1112, 2002.
doi:10.1109/20.996284

12. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Theory of self-adjoint S-parameter sensitivities for lossless nonhomogeneous transmission-line modeling problems," IET Microwave Antennas Propag., Vol. 2, 211-220, 2008.
doi:10.1049/iet-map:20070125

13. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microw. Theory Tech., Vol. 35, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658

14. Hoefer, W. J. R., "The transmission-line matrix method --- Theory and applications," IEEE Trans. Microw. Theory Tech., Vol. 33, 882-893, 1985.
doi:10.1109/TMTT.1985.1133146

15. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "An AVM technique for 3D TLM with symmetric condensed nodes," IEEE Microw. and Wireless Components Lett., Vol. 15, 618-620, 2005.
doi:10.1109/LMWC.2005.856696

16. Trenkic, V., C. Christopoulos, and T. M. Benson, "New symmetrical super-condensed node for the TLM method," Electronics Lett., Vol. 30, 329-330, 1994.
doi:10.1049/el:19940207

17. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM --- Part I: Materials with frequency-dependent properties," IEEE Trans. Antennas Propagat., Vol. 47, 1528-1534, 1999.
doi:10.1109/8.805895

18. Mansou, R. R., "High-Q tunable dielectric resonator filters," IEEE Microw. Mag., Vol. 10, 84-98, 2009.
doi:10.1109/MMM.2009.933591

19. Cohn, S. B., "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microw. Theory Tech., Vol. 16, 218-227, 1968.
doi:10.1109/TMTT.1968.1126654

20. Saliminejad, R. and M. R. Ghafouri Fard, "A novel and accurate method for designing dielectric resonator filter," Progress In Electromagnetics Research B, Vol. 8, 293-306, 2008.
doi:10.2528/PIERB08070602

21. Ali, S., N. Nikolova, and M. H. Bakr, "Central adjoint variable method for sensitivity analysis with structured grid electromagnetic solvers," IEEE Trans. Magn., Vol. 40, 1969-1971, 2004.
doi:10.1109/TMAG.2004.830999

22. Petosa, A., N. Simons, R. Siushansian, A. Ittipiboon, and M. Cuhaci, "Design and analysis of multisegment dielectric resonator antennas," IEEE Trans. Antennas Propagat., Vol. 48, 738-742, 2000.
doi:10.1109/8.855492

23. Rezaei, P., M. Hakkak, and K. Forooraghi, "Design of wide-band dielectric resonator antenna with a two-segment structure," Progress In Electromagnetics Research, Vol. 66, 111-124, 2006.
doi:10.2528/PIER06110701

24. Al-Zoubi, A. S., A. A. Kishk, and A. W. Glisson, "Analysis and design of a rectangular dielectric resonator antenna FED by dielectric image line through narrow slots," Progress In Electromagnetics Research, Vol. 77, 379-390, 2007.
doi:10.2528/PIER07082504

25. Fayad, H. and P. Record, "Multi-feed dielectric resonator antenna with reconfigurable radiation pattern," Progress In Electromagnetics Research, Vol. 76, 341-356, 2007.
doi:10.2528/PIER07071204