Vol. 142
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-04
A 23-GHz Bandwidth Automatic Gain Control Amplifier with Wide Dynamic Range for High Speed Communication
By
Progress In Electromagnetics Research, Vol. 142, 261-273, 2013
Abstract
In this paper, a wide bandwidth and wide dynamic range AGC amplifier is presented. A push-pull variable gain amplifier (VGA) structure is proposed for wide dynamic rang. Moreover the bandwidth enhancement technique is used in the post amplifier design to ensure the wide bandwidth and gain of whole circuit. The experimental results demonstrate that the proposed AGC amplifier that is fabricated in 0.13 μm SiGe BiCMOS process, achieves a 23-GHz bandwidth and 36-dB dynamic rang among the recently published AGC amplifiers, whereas the power and area consumption are 57.6 mW and 1.9 mm2, respectively.
Citation
Bo Zhang, Yong-Zhong Xiong, Lei Wang, Sanming Hu, and Joshua Le-Wei Li, "A 23-GHz Bandwidth Automatic Gain Control Amplifier with Wide Dynamic Range for High Speed Communication," Progress In Electromagnetics Research, Vol. 142, 261-273, 2013.
doi:10.2528/PIER13062001
References

1. Deng, L., D. Liu, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/s 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress In Electromagnetics Research, Vol. 126, 449-461, 2012.
doi:10.2528/PIER12013006

2. Yang, M.-H., F.-H. Guan, J. Xu, X. Shi, and X.-W. Sun, "Signal model analysis of a 35 GHz alternating current direct detection receiver," Progress In Electromagnetics Research, Vol. 88, 275-287, 2008.
doi:10.2528/PIER08111605

3. Dyadyuk, V., J. D. Bunton, J. Pathikulangara, R. Kendall, O. Sevimli, L. Stokes, and D. A. Abbott, "A multigigabit millimeter-wave communication system with improved spectral efficiency," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2813-2821, Dec. 2007.
doi:10.1109/TMTT.2007.909875

4. Khaddaj Mallat, N., E. Moldovan, and S. O. Tatu, "Comparative demodulation results for six-port and conventional 60 GHz direct conversion receivers," Progress In Electromagnetics Research, Vol. 84, 437-499, 2008.
doi:10.2528/PIER08081003

5. Hirata, A., T. Kosugi, H. Takahashi, J. Takeuchi, H. Togo, M. Yaita, N. Kukutsu, K. Aihara, K. Murata, Y. Sato, T. Nagatsuma, and Y. Kado, "120-GHz-band wireless link technologies for outdoor 10-Gbit/s data transmission," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 3, 881-895, Mar. 2012.
doi:10.1109/TMTT.2011.2178256

6. Nakasha, Y., M. Sato, T. Tajima, Y. Kawano, T. Suzuki, T. Takahashi, K. Makiyama, T. Ohki, and N. Hara, "W-band transmitter and receiver for 10-Gb/s impulse radio with an optical-fiber interface," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3171-3180, Dec. 2009.
doi:10.1109/TMTT.2009.2033242

7. Hirata, A., R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, "10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz band millimeter-wave signal ," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 5, 1102-1109, 2009.
doi:10.1109/TMTT.2009.2017256

9. Kucharski, D. and K. T. Kornegay, "Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 2, 590-597, Feb. 2005.
doi:10.1109/TMTT.2004.840731

10. Wong, S.-K., F. KungWai Lee, S. Maisurah, and M. N. B. Osman, "A wimedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

11. Liu, C., Y.-P. Yan, W.-L. Goh, Y.-Z. Xiong, L.-J. Zhang, and M. Madihian, "A 5-Gb/s automatic gain control amplifier with temperature compensation," IEEE J. Solid-State Circuits, Vol. 47, No. 6, 1323-1333, Jun. 2012.
doi:10.1109/JSSC.2012.2192660

12. Lai, J. W., Y.-J. Chuang, K. Cimino, and M. Feng, "Design of variable gain amplifier with gain-bandwidth product up to 354 GHz implemented in InP-InGaAs DHBT technology," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 2, 599-604, Feb. 2006.
doi:10.1109/TMTT.2005.862676

13. Liu, C., Y.-P. Yan, W.-L. Goh, Y.-Z. Xiong, L.-J. Zhang, and M. Madihian, "A 5-Gb/s automatic gain control amplifier with temperature compensation," IEEE J. Solid-State Circuits, Vol. 47, No. 6, 1323-1333, Jun. 2012.
doi:10.1109/JSSC.2012.2192660

14. Liao, C.-F. and S.-I. Liu, "A 10 Gb/s CMOS AGC amplifier with 35 dB dynamic range for 10Gb ethernet," IEEE ISSCC Dig. Tech. Papers, 516-517, 2006.

15. Liao, C.-F. and S.-I. Liu, "40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90nm CMOS," IEEE J. Solid-State Circuits, Vol. 43, No. 3, 642-655, Mar. 2008.
doi:10.1109/JSSC.2007.916626

16. Wu, C.-H., C.-H. Lee, W.-S. Chen, and S.-I. Liu, "CMOS wideband amplifier using multiple inductive-series peaking technique," IEEE J. Solid-State Circuits, Vol. 40, No. 2, 548-552, Feb. 2005.
doi:10.1109/JSSC.2004.840979

17. Park, S.-B., J. E. Wilson, and M. Ismail, "The chip-peak detectors for multistandard wireless receivers," IEEE Circuits and Devices Magazine, Vol. 22, No. 6, 6-9, Nov. 2006.
doi:10.1109/MCD.2006.307270