Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-30
A Compressive Sensing Signal Detection for UWB Radar
By
Progress In Electromagnetics Research, Vol. 141, 479-495, 2013
Abstract
A major challenge in UWB signal processing is the requirement for very high sampling rate under Shannon-Nyquist sampling theorem which exceeds the current ADC capacity. Radar signal is essentially a delayed and scaled version of the transmitted pulse, determined by sparse parameters such as time delays and amplitudes. A system for sampling UWB radar signal at an ultra-low sampling rate based on the Finite Rate of Innovation (FRI) and the estimation of time delays and amplitudes to detect UWB radar signal is presented in the paper. This sampling scheme which acquires the Fourier series coefficients often results in sparse parameter extraction for UWB radar signal detection. The parameters such as time-delays and amplitudes are estimated using the total variation norm minimization. With this system, the UWB radar signal can be accurately reconstructed and detected with overwhelming probability at the rate much lower than Nyquist rate. The simulation results show that the proposed approach offers very good recovery performances for noisy UWB radar signal using very small number of samples, which is effective for sampling and detecting UWB radar signal.
Citation
Shugao Xia, Yuhong Liu, Jeffrey Sichina, and Fengshan Liu, "A Compressive Sensing Signal Detection for UWB Radar," Progress In Electromagnetics Research, Vol. 141, 479-495, 2013.
doi:10.2528/PIER13061714
References

1. Hanson, K. M., "Communication in the presence of noise," Proceedings of the IRE, Vol. 37, 10-21, 1949.

2. Nguyen, L. H., "Signal and image processing algorithms for the army research lab ultra-wideband synchronous impulse reconstruction (UWB sire) radar,", Tech. Rep. ARL-TR-4784, ARL, 2009.

3. Mishali, M. and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE Journal of Selected Topics in Signal Process, Vol. 4, No. 2, 375-391, 2010.
doi:10.1109/JSTSP.2010.2042414

4. Candes, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

5. Duarte, M. F. and Y. C. Eldar, "Structured compressed sensing: From theory to applications," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4053-4085, 2011.
doi:10.1109/TSP.2011.2161982

6. Tropp, J. A., J. N. Laska, M. F. Duarte, J. K. Romberg, and R. Baraniuk, "Beyond Nyquist: Efficient sampling of sparse bandlimited signals," IEEE Transactions on Information Theory, Vol. 56, No. 1, 520-544, 2010.
doi:10.1109/TIT.2009.2034811

7. Vetterli, M., P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," IEEE Transactions on Signal Processing, Vol. 5, No. 6, 1417-1428, 2002.
doi:10.1109/TSP.2002.1003065

8. Uriguen, J., Y. C. Eldar, P. L. Dragotti, and Z. Ben-Haim, "Sampling at the rate of innovation: Theory and applications," Compressed Sensing: Theory and Applications, Y. C. Eldar and G. Kutyniok (eds.), Cambridge University Press, 2012.

9. Lie, J. P., B. P. Ng, and C. M. See, "Multiple UWB emitters DOA estimation employing time hopping spread spectrum," Progress In Electromagnetics Research, Vol. 78, 83-101, 2008.
doi:10.2528/PIER07091303

10. Michaeli, T. and Y. C. Eldar, "Xampling at the rate of innovation," IEEE Transactions on Signal Processing, Vol. 60, No. 3, 1121-1133, 2012.
doi:10.1109/TSP.2011.2178409

11. Tur, R., Y. C. Eldar, and Z. Friedman, "Innovation rate sampling of pulse streams with application to ultrasound imaging," IEEE Transactions on Signal Processing, Vol. 59, No. 4, 1827-1142, 2011.
doi:10.1109/TSP.2011.2105480

12. Gedalyahu, K., R. Tur, and Y. C. Eldar, "Multichannel sampling of pulse streams at the rate of innovation," IEEE Transactions on Signal Processing, Vol. 59, No. 4, 1491-1504, 2011.
doi:10.1109/TSP.2011.2105481

13. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1997.

14. Wagner, N., Y. C. Eldar, and Z. Friedman, "Compressed beamforming in ultrasound imaging," IEEE Transactions on Signal Processing, Vol. 60, No. 9, 4643-4657, 2012.
doi:10.1109/TSP.2012.2200891

15. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

16. Donoho, D. L. and P. B. Stark, "Uncertainty principles and signal recovery," SIAM Journal on Applied Mathematics, Vol. 49, No. 3, 906-931, 1989.
doi:10.1137/0149053

17. Candes, E. J. and C. Fernandez-Granda, "Towards a mathematical theory of super-resolution," Communications on Pure and Applied Mathematics, 2013, doi: 10.1002/cpa.21455.

18. Roy, R. and T. Kailath, "Esprit-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

19. Tang, G., B. N. Bhaskar, P. Shah, and B. Recht, "Compressed sensing of the grid," 50th Annual Allerton Conference on Communication, Control, and Computing, 778-785, Allerton, Monticello, USA, 2012.