Vol. 32
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-19
Design of Optical Devices Based on Hybrid Periodic/Fibonacci Photonic Crystal in the Visible and the Near Infrared Domains
By
Progress In Electromagnetics Research M, Vol. 32, 169-180, 2013
Abstract
In this work, we exploit photonic crystal heterostructures formed by the combination of periodic and Fibonacci structures to design promising optical devices acting in the visible and the near infrared domains. An hybrid structure of the type Bragg mirror-(Fibonacci)S is proposed to enhance the high reflection band through the one dimensional photonic crystal in the near infrared. The use of the configuration exhibits a large photonic band gap at any angle of incidence and for both polarizations. The proposed structure is a quarter wavelength omnidirectional mirror of 37 layers with a bandwidth larger than that of the periodic structure with an increasing ratio 3.7, and it covers all the optical telecommunication wavelengths 0.85, 1.3 and 1.55 μm. Then a second structure of the type Bragg mirror-(Fibonacci)S-Bragg mirror with varied optical thicknesses permits to confine strongly the light giving a rise to a microcavity through the visible range with strong mode localisation. Since different physical phenomena have their own relevant physical scales, we exploit the physical properties of the proposed structures in different wavelength domains to obtain different optical devices. The transmission spectra are determined by using a theoretical model based on the Transfer Matrix Method (TMM).
Citation
Abir Mouldi, and Mounir Kanzari, "Design of Optical Devices Based on Hybrid Periodic/Fibonacci Photonic Crystal in the Visible and the Near Infrared Domains," Progress In Electromagnetics Research M, Vol. 32, 169-180, 2013.
doi:10.2528/PIERM13061708
References

1. Mouldi, A. and M. Kanzari, "Broad multilayer antireflection coating by apodized and chirped photonic crystal," Opt. Com., Vol. 284, 4124-4128, 2011.
doi:10.1016/j.optcom.2011.05.005

2. Mouldi, A., M. Kanzari, and B. Rezig, "Broad antireflection grating by apodization of one dimensional photonic crystal," PIERS Proceedings, 1461-1464, Marrakesh, Morocco, Mar. 2023, 2011.

3. Mouldi, A. and M. Kanzari, "Influence of the optical parameters on transmission properties of the chirped photonic crystal," ACES Journal, Vol. 26, No. 3, 259-266, 2011.

4. Mouldi, A. and M. Kanzari, "Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses," Optik, Vol. 123, No. 2, 125-131, 2012.
doi:10.1016/j.ijleo.2011.03.010

5. Mouldi, A. and M. Kanzari, "Effects of punctual defects on the optical properties of the one-dimensional photonic crystals," Phys. Chem. News, Vol. 50, 14-22, 2009.

6. Tomljenovic-Hanic, S., C. M. de Sterke, M. J. Steel, B. J. Eggleton, Y. Tanaka, and S. Noda, "High-Q cavities in multilayer photonic crystal slabs," Opt. Express, Vol. 15, No. 25, 17248-17253, 2007.
doi:10.1364/OE.15.017248

7. Escorcia-Garcia, J. and M. E. Mora-Ramos, "Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon," PIERS Online, Vol. 5, No. 2, 167-170, 2009.
doi:10.2529/PIERS080906010703

8. Cox, J. D., J. Sabarinatha, and M. R. Singh, "Resonant photonic states in coupled heterostructure photonic crystal waveguides," Nanoscale Res. Let., 741-746, 2010.
doi:10.1007/s11671-010-9551-z

9. Han, P. and H. Wang, "Criterion of omnidirectional reflection in a one-dimensional photonic heterostructure," J. Opt. Soc. Am. B, Vol. 22, No. 7, 1571-1575, 2005.
doi:10.1364/JOSAB.22.001571

10. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructure," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

11. Li, Z.-Y., "Principles of the plane-wave transfer-matrix method for photonic crystals," Science and Technology of Advanced Materials, Vol. 6, No. 7, 837-841, Oct. 2005.
doi:10.1016/j.stam.2005.06.013

12. Zeng, Y., Y. Fu, X. Chen, W. Lu, and H. Agren, "Extended plane-wave-based transfer-matrix approach to simulating dispersive photonic crystals," Solid State Communications, Vol. 139, No. 7, 328-333, Aug. 2006.
doi:10.1016/j.ssc.2006.06.036

13. Mouldi, A. and M. Kanzari, "Design of microwave devices exploiting Fibonacci and hybrid periodic/Fibonacci one dimensional photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 221-240, 2012.

14. Ben Abdelaziz, K., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005