Vol. 42
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-08-09
Omnidirectional Reflection Extension in a One-Dimensional Superconducting-Dielectric Binary Graded Photonic Crystal with Graded Geometric Layers Thicknesses
By
Progress In Electromagnetics Research Letters, Vol. 42, 13-22, 2013
Abstract
The Omnidirectional reflection characteristics of one-dimensional (1D) superconducting-dielectric binary graded photonic crystals (PhCs) are studied by using transfer matrix method. The influences of thickness changing rate, numbers of periods, incident angles are analyzed. And the omnidirectional photonic band gaps are extended markedly in the 1D thickness-graded superconducting-dielectric PhC.
Citation
Zhaohong Wang, Chen Guo, and Wei Jiang, "Omnidirectional Reflection Extension in a One-Dimensional Superconducting-Dielectric Binary Graded Photonic Crystal with Graded Geometric Layers Thicknesses," Progress In Electromagnetics Research Letters, Vol. 42, 13-22, 2013.
doi:10.2528/PIERL13061602
References

1. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

2. Wiersma, D. S., R. Sapienza, S. Mujumdar, M. Colocci, M. Ghulinyan, and L. Pavesi, "Optics of nanostructured dielectrics," Journal of Optics A - Pure and Applied Optics, Vol. 7, S190-S197, 2005.
doi:10.1088/1464-4258/7/2/025

3. Bonifacio, L. D., B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, "Stacking the nanochemistry deck: Structural and compositional diversity in one-dimensional photonic crystals," Advanced Materials, Vol. 21, 1641-1646, 2009.
doi:10.1002/adma.200802348

4. Scotognella, F., "Four-material one dimensional photonic crystals," Optical Materials, Vol. 34, 1610-1613, 2012.
doi:10.1016/j.optmat.2012.04.005

5. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

6. Lu, Y. H., M. D. Huang, S. Y. Park, P. J. Kim, T. U. Nahm, Y. P. Lee, and J. Y. Rhee, "Controllable switching behavior of defect modes in one-dimensional heterostructure photonic crystals," Journal of Applied Physics, Vol. 101, 036110, 2007.
doi:10.1063/1.2435067

7. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B,, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

8. Hsu, H.-T., T.-W. Chang, T.-J. Yang, B.-H. Chu, and C.-J. Wu, "Analysis of wave properties in photonic crystal narrowband filters with left-handed defect," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2285-2298, 2010.
doi:10.1163/156939310793699073

9. Winn, N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Letters, Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

10. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365

11. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Applied Physics Letters, Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

12. Wu, C.-J., Y.-N. Rao, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610

13. Li, H., H. Chen, and X. Qiu, "Bandgap extension of disordered 1D binary photonic crystals," Physics B, Vol. 279, 164-167, 2000.
doi:10.1016/S0921-4526(99)00716-4

14. Dai, X. Y., Y. J. Xiang, and S. C.Wen, "Broad omnidirectional reflector in the one-dimensional tenary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

15. Prasad, S., V. Singh, and A. K. Singh, "Modal propagation characteristics of EM waves internary one-dimensional plasma photonic crystals," Optik, Vol. 121, 1520-1528, 2010.
doi:10.1016/j.ijleo.2009.02.024

16. Wu, X.-K., S.-B. Liu, H.-F. Zhang, C.-Z. Li, and B.-R. Bian, "Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals," Journal of Optics, Vol. 13, 035101, 2011.

17. Wu, C.-J., C.-L. Liu, and T.-J. Yang, "Investigation of photonic band structure in a one-dimensional superconducting photonic crystal," Journal of the Optical Society America B, Vol. 26, 2089-2094, 2009.
doi:10.1364/JOSAB.26.002089

18. Van Duzer, T. and C. W. Turner, Principles of Superconductive Devices and Circuits, Chapter 3, Edward Arnold, London, 1981.

19. Raymond Ooi, C. H. and T. C. Au Yeung, "Polariton gap in a superconductor-dielectric superlattice," Physics Letters A, Vol. 259, 413-419, 1999.

20. Yeh, P., Optical Waves in Layered Media, Chapter 6, Wiley, New York, 1988.