Vol. 42
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-08-16
A Compact Tunable Dual-Stop-Band Filter Based on DMS and DGS
By
Progress In Electromagnetics Research Letters, Vol. 42, 23-36, 2013
Abstract
In this paper, a compact tunable dual-stop-band filter is proposed. The proposed filter is based on the combination of double H-shaped defected ground structure (HDGS) and E-shaped defected microstrip structure (EDMS). The loaded HDGS/EDMS varactor diode is introduced to realize the tunable dual-stop-band filter. The equivalent-circuit models and theoretical analysis of the proposed structure are presented; also its performance evaluation is compared with traditional structure. The proposed filter has the characteristic of two independently adjustable stopbands and wide tuning range. EDMS also shows size reduction up to 38% compared with the T-shaped defected microstrip structure. The measured performance of the tunable dual-stop-band filter agrees well with the simulation results.
Citation
Ming Zhong Lin, Qiu-Yi Wu, Zi Han Wu, and Xiao-Wei Shi, "A Compact Tunable Dual-Stop-Band Filter Based on DMS and DGS," Progress In Electromagnetics Research Letters, Vol. 42, 23-36, 2013.
doi:10.2528/PIERL13060602
References

1. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandstop filters," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 9, 1361-1367, Sep. 1982.

2. Zhou, L. H., H. Tang, J. X. Chen, and Z. H. Bao, "Tunable filtering balun with enhanced stopband rejection," Electron. Lett., Vol. 48, No. 14, 845-847, Jul. 2012.

3. Cameron, R. J., M. Yu, and Y. Wang, "Direct-coupled microwave filters with single and dual stopbands," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3288-3297, Nov. 2005.

4. Ning, H., J. Wang, Q. Xiong, and L. Mao, "Design of planar dual and triple narrow-band bandstop filters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012.

5. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett., Vol. 40, No. 21, 1347-1348, Oct. 2004.

6. Bouyge, D., D. Mardivirin, J. Bonache, A. Crunteanu, A. Pothier, M. Duran-Sindreu, P. Blondy, and F. Martin, "Split Ring Resonators (SRRs) based on Micro-Electro-Mechanical deflectable cantilever-type rings: Application to tunable stopband filters," Microwave and Wireless Components Letters, Vol. 21, No. 5, 243-245, May 2011.

7. Gil, I., F. Martin, X. Rottenberg, and W. De Raedt, "Tunable stop-band filter at Q-band based on RF-MEMS metamaterials," Electron. Lett., Vol. 43, No. 21, 10, Oct. 2007.

8. Wang, X., B. Wang, H. Zhang, and K. J. Chen, "A tunable bandstop resonator based on a compact slotted ground structure," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1912-1917, Sep. 2007.

9. Huang, S. and Y. Lee, "A compact E-shaped patterned ground structure and its application to tunable bandstop resonator," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 3, 657-666, Mar. 2009.

10. Chin, K.-S. and C.-K. Lung, "Miniaturized microstrip dual-band bandstop filters using tri-section stepped-impedance resonators," Progress In Electromagnetics Research C, Vol. 10, 37-48, 2009.

11. Chiou, H.-K. and C.-F. Tai, "Dual-band microstrip bandstop filter using dual-mode loop resonator," Electron. Lett., Vol. 45, No. 10, 507-509, 2009.

12. Vegesna, S. and M. Saed, "Microstrip dual-band bandpass and bandstop filters," Microw. Opt. Technol. Lett., Vol. 54, No. 1, 168-171, 2012.

13. Huang, S. Y. and Y. H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 3, 657-666, Mar. 2009.

14. Wang, J., H. Ning, Q. Xiong, M. Li, and L. Mao, "A novel miniaturized dual-band bandstop filter using dual-plane defected structures," Progress In Electromagnetics Research, Vol. 134, 397-417, 2013.

15. Wang, X. H., Z. Wang, H. Zhang, and K. J. Chen, "A tunable bandstop resonator based on a compact slotted ground structure," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1912-1918, Sep. 2007.

16. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG cells," IEEE Microw. Guided Wave Lett., Vol. 10, No. 10, 403-405, 2000.

17. Kazerooni, M., A. Cheldavi, and M. Kamarei, "A novel bandpass defected microstrip structure (DMS) filter for planar circuits," PIERS, 1214-1217, Moscow, Russia, Aug. 18-21, 2009.