Vol. 32
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-08-21
Design of Spiral Circular Coils in Wet and Dry Tissue for Bio-Implanted Micro-System Applications
By
Progress In Electromagnetics Research M, Vol. 32, 181-200, 2013
Abstract
This paper deals with the design of small-sized bio-implanted spiral circular coils (pancake) with an operating frequency of 13.56 MHz. The external and internal coils' geometric dimensions are dout = 56 mm, din = 10 mm and dout = 11.6 mm, din = 5 mm, respectively, in which the electrical performance is verified through the commercial field solver High Frequency Structural Simulator (HFSS 13.0), which employs the finite-element method (FEM) technique. Mathematical models for the proposed coils are developed. The simulation is performed-based on the developmental model in the air and at depths 6\,mm in a human biological tissue of dry and wet-skin. The results demonstrate that the external and internal coils have maximum near-field gains of 54.15 dB and 53.30 dB in air. The maximum gains of the external coil contacted the wet and dry skin are 49.80 dB and 48.95 dB, respectively. The maximum gains of the internal coil at depths of 6 mm in the wet and dry tissue are 41.80 dB and 41.40 dB, respectively. However, the external coil radiation efficiencies on wet- and dry-skin are 92% and 90%, respectively, compared with that on air. The internal coil radiation efficiencies on wet- and dry-skin are 78.4% and 77.6%, respectively, compared with that on air. In this study, the specific absorption rate (SAR) and radiated power results of the internal coil are investigated using SEMCAD 16.4 software. The SAR and power loss studies show that the designed implanted coil has a negligible effect on the wet and dry skin and can be ignored.
Citation
Saad Mutashar, Mahammad A. Hannan, Salina Abdul Samad, and Aini Hussain, "Design of Spiral Circular Coils in Wet and Dry Tissue for Bio-Implanted Micro-System Applications," Progress In Electromagnetics Research M, Vol. 32, 181-200, 2013.
doi:10.2528/PIERM13052707
References

1. Hannan, M., M. Saad, A. S. Salina, and H. Aini, "Modulation techniques for biomedical implanted devices and their challenges," Sensor, Vol. 12, 297-319, 2012.
doi:10.3390/s120100297

2. Wang, G., W. Liu, M. Sivaprakasam, and G. Alperkendir, "Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants," IEEE Trans. Circuits and Syst. I, Vol. 52, 2109-2117, 2005.
doi:10.1109/TCSI.2005.852923

3. Lee, S. B., H. M. Lee, M. Kiani, U. Jow, and M. Ghovanlo, "An inductively powered scalable 32-channel wireless neural recording system on achip for neuroscience applications," IEEE Trans. Biomed. Circuits and Systems, Vol. 4, 360-371, 2010.
doi:10.1109/TBCAS.2010.2078814

4. Saad, M., M. A. Hannan, A. Salina, and A. Hussain, "Efficient data and power transfer for bio-implanted devices based on ASK modulation techniques," J. of Mech. in Medi. and Biology., Vol. 12, 1-17, 2012.

5. Chih, K. L., J. C. Jia, L. C. Cho, L. C. Chen, and W. Chua, "An implantable bi-directional wireless transmission system for transcutaneous biological signal recording," Physiol. Meas., Vol. 26, 83-97, 2005.
doi:10.1088/0967-3334/26/1/008

6. Park, S. I., "Enhancement of wireless power transmission into biological tissue using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.

7. Gabriel, C., S. Gabriely, and E. Corthout, "The dielectric properties of biological tissues: I, II and III, literature survey," J. of Phys. Med. Biol., Vol. 41, 2231-2293, 1996.
doi:10.1088/0031-9155/41/11/001

8. Lin, J. C., "Computer methods for field intensity predictions," CRC Handbook of Biological Effects of Electromagnetic Fields,, C. Polk and E. Postow, Eds., Vol. 22, 73-313, CRC Press, Boca Raton, FL, 1986.

9. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Trans. on Antennas and Propagation, Vol. 57, 2806-2812, 2009.
doi:10.1109/TAP.2009.2027197

10. Al Shaheen, A., "New patch antenna for ISM band at 2.45 GHz," ARPN. J. of Eng. and Applied Sciences, Vol. 7, 1-9, 2012.
doi:10.3923/jeasci.2012.1.7

11. Zhu, F., S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J.-D. Xu, "Design and analysis of planar ultra-wide and antenna with dual-notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.
doi:10.2528/PIER12033105

12. Meysam, Z. and P. G. Gulak, "Maximum achievable efficiency in nearfield coupled power-transfer systems," IEEE Trans. Biomed. Circuits and Systems, Vol. 6, 228-245, 2012.
doi:10.1109/TBCAS.2011.2174794

13. Uei, M. J. and M. Ghovanloo, "Modeling and optimization of printed spiral coils in air and muscle tissue environments," IEEE 31st Annual International Conference of the (EMBS), 6387-6390, Minneapolis, Minnesota, USA, Sep. 2-6, 2009.

14. Zeng, F. G., S. Rebscher, W. Harrison, X. Sun, and H. Feng, "Cochlear implants: System design, integration, and evaluation," IEEE Rev. Biomed. Eng., Vol. 1, 115-142, 2008.
doi:10.1109/RBME.2008.2008250

15. Luis, A., F. X. Rui, W. C. Kuang, and J. Minkyu, "Closed loop wireless power transmission for implantable medical device," IEEE 13th International Conference on Integrated Circuits, 404-407, Singapore, Dec. 12-14, 2011.

16. Li, X., H. Zhang, F. Peng, Y. Li, T. Yang, B. Wang, and D. Fang, "A wireless magnetic resonance energy transfer system for micro implantable medical sensors," Sensors, Vol. 12, 10292-10308, 2012.
doi:10.3390/s120810292

17. Harrison, R. R., P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system," IEEE J. Solid-State Circuits, Vol. 42, 123-133, 2007.
doi:10.1109/JSSC.2006.886567

18. Clark, G. M., Cochlear Implants: Fundamentals and Applications, Ch. 8, Springer-Verlag, New York , 2003.
doi:10.1007/b97263

19. Humayun, M. S., J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. Juan, "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis," Vis. Res., Vol. 43, 2573-2581, 2003.
doi:10.1016/S0042-6989(03)00457-7

20. Finkenzeller, K., RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd Ed., Wiley, New York, 2003.

21. Ko, W. H., S. P. Liang, and C. D. Fung, "Design of radio-frequency powered coil for implanted instruments," Journal of Med. Bio. Eng. Compute., Vol. 15, 634-640, 1977.
doi:10.1007/BF02457921

22. Mohan, S., D. C. Galbraith, and R. L. White, "Radio-frequency coils in implantable devices: Misalignment analysis and design procedure," IEEE Trans. Biomed. Eng., Vol. 34, 276-282, 1987.

23. Uei, M. J. and G. Maysam, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biomed. Circuits and Systems, Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130

24. Grover, F. W., Inductance Calculations: Working Formulas and Tables, D. Van Nostrand Co., New York, 1946.

25. Harrison, R. R., "Designing efficient inductive power links for implantable devices," IEEE International Conference on Circuits and Systems, 2080-2083, New Orleans, USA, May 27-30, 2007.

26. Silay, K. M., C. Dehollaini, and M. Declercq, "Improvement of power efficiency of inductive links for implantable devices," IEEE Conference on Research in Microelectronics and Electronics, 229-232, Istanbul, Turkey, Apr. 22-25, 2008.

27. Mohan, S., M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE J. Solid-State Circuits, Vol. 34, 1419-1424, 1999.
doi:10.1109/4.792620

28. Felippa, C. A., "Introduction to finite element method,", Available online at http://caswww.colorado.edu/courses.d/IFEM.d/IFEM.Ch01.d/IFEM.Ch01.pdf.

29. IEEE C95.1-2005 "IEEE standards for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", Institute of Electrical and Electronics Engineers, New York, 2005.

30. Lazzi, G., "Power dissipation characteristics and computational methods," IEEE Journal of Engineering in Medicine and Biology Magazine, 75-81, 2005.
doi:10.1109/MEMB.2005.1511503

31. Fujimoto, M., A. Hirata, J. Wang, O. Fujiwara, and T. Shiozawa, "FDTD-derived correlation of maximum temperature increase and peak SAR in child and adult head models due to dipole antenna," IEEE Trans. on Electromagnetic Compatibility, Vol. 48, No. 1, 240-247.
doi:10.1109/TEMC.2006.870816

32. Office of Engineering Technology "Understanding the FCC regulations for low-power, non-licensed transmitters,", OET Bulletin No. 63, Oct. 1993.