1. Yablonovitch, E., "Inhibited spontaneous emission of photons in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2061, 1987.
doi:10.1103/PhysRevLett.58.2059
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486
3. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105
4. Jim, K. L., D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, "One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films," J. Appl. Phys., Vol. 103, 083107, 2008.
doi:10.1063/1.2907418
5. Tanabe, T., M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Low mode volume slotted photonic crystal single nanobeam cavity," Appl. Phys. Lett., Vol. 97, 151112, 2005.
doi:10.1063/1.2089185
6. Sirigiri, J. R., K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Photonic-band-gap resonator gyrotron," Phys. Rev. Lett., Vol. 86, 5628, 2001.
doi:10.1103/PhysRevLett.86.5628
7. Smirnova, E. I., A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Demonstration of a 17 GHz, high-gradient accelerator with a photonic-band-gap structure," Phys. Rev. Lett., Vol. 95, 074801, 2005.
doi:10.1103/PhysRevLett.95.074801
8. Zhang, H. F., M. Li, and S. B. Liu, "Study periodic band gap structure of the magnetized plasma photonic crystals," Optelectron Lett., Vol. 5, 112-116, 2009.
doi:10.1007/s11801-009-8165-0
9. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113-2119, 2012.
doi:10.1016/j.ssc.2012.09.009
10. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phy. Rev. B, Vol. 58, 7230-7251, 1998.
doi:10.1103/PhysRevB.58.7230
11. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89
12. Sakai, O. and K. Tachibana, "Plasma as metamaterial: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001
13. Ginzberg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon, Pergamon, New York, 1970.
14. Qi, L. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605
15. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasmas, Vol. 16, 043508, 2009.
doi:10.1063/1.3116642
16. Li, C., S. Liu, X. Kong, H. Zhang, B. Bian, and X. Zhang, "A novel comb-like plasma photonic crystals filter in the presence of evanescent wave," IEEE Trans. Plasma Sci., Vol. 39, 1969-1973, 2011.
doi:10.1109/TPS.2011.2162653
17. Zhang, H. F., S. B. Liu, and X. K. Kong, "Enlarged the omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue-Morse aperiodic structure," Physica B, Vol. 410, 244-250, 2013.
doi:10.1016/j.physb.2012.10.025
18. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bian, "Enlarged omnidirectional photonic photonic band gap in heterostructure of plasma and dielectric photonic crystals," Optik, Vol. 124, 751-756, 2013.
doi:10.1016/j.ijleo.2012.01.025
19. Shiverhwari, L., "Zero permittivity band characteristics in one-dimensional plasma dielectric photonic crystals," Optik, Vol. 122, 1523-1526, 2011.
doi:10.1016/j.ijleo.2010.09.036
20. Sakaguchi, T., O. Sakai, and K. Tachibana, "Photonic bands in two-dimensional microplasma array II. Band gaps observed in millimeter and sub-terahertz ranges," J. Appl. Phys., Vol. 101, 073305, 2007.
doi:10.1063/1.2713940
21. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional mircoplasma array I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304, 2007.
doi:10.1063/1.2713939
22. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Phys. Plasmas, Vol. 17, 073506, 2010.
doi:10.1063/1.3456520
23. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasmas, Vol. 16, 043508, 2009.
doi:10.1063/1.3116642
24. Liu, S. B., C. Q. Gu, J. J. Zhou, and N. C. Yuan, "FDTD simulation for magnetized plasma photonic crystals," Acta Physica Sinica, Vol. 55, 1283-1288, 2006.
25. Zhang, H. F., L. Ma, and S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta Physica Sinica, Vol. 58, 01071-01075, 2009.
26. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628
27. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure," Phys. Plasmas, Vol. 19, 122102, 2012.
doi:10.1063/1.4769128
28. Qi, L., Z. Yang, and T. Fu, "Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer," Phys. Plasmas, Vol. 19, 012509, 2012.
doi:10.1063/1.3677876
29. Zhang, H. F., S. B. Liu, and X. K. Kong, "Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary declination," Phys. Plasmas, Vol. 19, 122103, 2012.
doi:10.1063/1.4766474
30. Hamidi, S. M., "Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals," Phys. Plasmas, Vol. 19, 012503, 2012.
doi:10.1063/1.3677263
31. Mehdian, H., Z. Mohammadzahery, and A. Hasanbeigi, "Analysis of plasma-magnetic photonic crystals with a tunable band gap," Phys. Plasmas, Vol. 20, 043505, 2013.
doi:10.1063/1.4795306
32. Qi, L., "Photonic band structures of two-dimensional magnetized plasma photonic crystals," J. Appl. Phys., Vol. 111, 073301, 2012.
doi:10.1063/1.3699213
33. Zhang, H. F., X. K. Kong, and S. B. Liu, "Analysis of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode," Acta Physica Sinica, Vol. 60, 055209, 2011.
34. Zhang, H. F., S. B. Liu, and X. K. Kong, "Defect mode properties of two-dimensional unmagnetized plasma photonic crystals with line-defect under transverse magnetic mode," Acta Physica Sinica, Vol. 60, 025215, 2011.
35. Fu, T., Z. Yang, Z. Shi, F. Lan, D. Li, and X. Gao, "Dispersion properties of a 2D magnetized plasma metallic photonic crystals," Phys. Plasmas, Vol. 20, 023109, 2013.
doi:10.1063/1.4792264
36. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. N. Guo, "Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field," Solid State Commun., Vol. 152, 1221-1229, 2012.
doi:10.1016/j.ssc.2012.04.055
37. Qi, L. and X. Zhang, "Band gap characteristics of plasma with periodically varying external magnetic field," Solid State Commun., Vol. 151, 1838-1841, 2011.
doi:10.1016/j.ssc.2011.08.012
38. Zhang, H. F., S. B. Liu, X. K. Kong, and B. R. Bian, "The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice," Optic Commun., Vol. 288, 82-90, 2013.
doi:10.1016/j.optcom.2012.09.078
39. Zhang, H. F., S. B. Liu, X. K. Kong, and B. R. Bian, "The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure," Phys. Plasmas, Vol. 20, 042110, 2013.
doi:10.1063/1.4801043
40. Zhang, H. F., S. B. Liu, and X. K. Kong, "Dispersion properties of three-dimensional plasma photonic crystals in diamond lattice arrangement," J. Lightwave Technol., Vol. 17, 1694-1702, 2013.
doi:10.1109/JLT.2013.2256879
41. Zhang, H. F., S. B. Liu, and B. X. Li, "The properties of photonic band gaps for three-dimensional tunable photonic crystals with simple-cubic lattices doped by magnetized plasma," Optics & Laster Technology, Vol. 50, 93-102, 2013.
doi:10.1016/j.optlastec.2013.02.011
42. Zhang, H. F., S. B. Liu, H. Yang, and X. K. Kong, "Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma," Phys. Plasmas, Vol. 20, 032118, 2013.
doi:10.1063/1.4798523
43. Li, Z. Y., J. Wang, and B. Y. Gu, "Creation of partial gaps in anisotropic photonic-band-gap structures," Phy. Rev. B, Vol. 58, 3721-3729, 1998.
doi:10.1103/PhysRevB.58.3721
44. Malkova, N., S. Kim, T. Dilazaro, and V. Gopalan, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B, Vol. 67, 125203, 2003.
doi:10.1103/PhysRevB.67.125203
45. Li, Z. Y., B. Y. Gu, and G. Y. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, 2574-2577, 1998.
doi:10.1103/PhysRevLett.81.2574
46. Li, Z. and L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 056702, 2003.
doi:10.1103/PhysRevE.67.056702
47. Marrone, M., V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, "Novel numerical method for the analysis of 2D photonic crystals: The cell method," Opt. Exp., Vol. 10, 1299-1304, 2002.
doi:10.1364/OE.10.001299
48. Jun, S., Y. S. Cho, and S. Im, "Moving least-square method for the band-structure calculation of 2D photonic crystals," Opt. Exp., Vol. 11, 541-551, 2003.
doi:10.1364/OE.11.000541
49. Chiang, P., C. Yu, and H. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E, Vol. 75, 026703, 2003.
doi:10.1103/PhysRevE.75.026703
50. Lou, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 56702, 2012.
51. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, "Comment on `photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave'," J. Appl. Phys., Vol. 110, 026104, 2011.
doi:10.1063/1.3605490