Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-03
Numerically Efficient Technique for Metamaterial Modeling (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 140, 263-276, 2013
Abstract
In this paper we present two simulation techniques for modeling periodic structures with three-dimensional elements in general. The first of these is based on the Method of Moments (MoM) and is suitable for thin-wire structures, which could be either PEC or plasmonic, e.g., nanowires at optical wavelengths. The second is a Finite Difference Time Domain (FDTD)-based approach, which is well suited for handling arbitrary, inhomogeneous, three-dimensional periodic structures. Neither of the two approaches make use of the traditional Periodic Boundary Conditions (PBCs), and are free from the difficulties encountered in the application of the PBC, as for instance slowness in convergence (MoM) and instabilities (FDTD).
Citation
Ravi Kumar Arya, Chiara Pelletti, and Raj Mittra, "Numerically Efficient Technique for Metamaterial Modeling (Invited Paper)," Progress In Electromagnetics Research, Vol. 140, 263-276, 2013.
doi:10.2528/PIER13051313
References

1. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces --- A review," IEEE Proc., Vol. 76, No. 12, 1593-1615, 1998.
doi:10.1109/5.16352

2. Wu, T. K., Frequency Selective Surface and Grid Array, John Wiley & Sons Inc., 1995.

3. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.

4. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

5. Harrington, R. F., Field Computation by Moment Method, The Macmillan Company, New York, 1968.

6. Blackburn, J. and L. R. Arnaut, "Numerical convergence in periodic method of moments of frequency-selective surfaces based on wire elements ," IEEE Trans. on Antennas and Propag., Vol. 53, 3308-3315, Oct. 2005.

7. Stevanovic, I., P. Crespo-Valero, K. Blagovic, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation ," IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 10, 3688-3697, Oct. 2006.
doi:10.1109/TMTT.2006.882876

8. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations ," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685

9. Wan, J. X., J. Lei, and C. H. Liang, "An efficient analysis of large-scale periodic microstrip antenna arrays using the characteristic basis function method," Progress In Electromagnetics Research, Vol. 50, 61-81, 2005.
doi:10.2528/PIER04050901

10. Yoo, K., N. Mehta, and R. Mittra, "A new numerical technique for analysis of periodic structures," Microwave and Optical Technology Letters, Vol. 53, No. 10, 2332-2340, Oct. 2011.
doi:10.1002/mop.26250

11. Mittra, R., C. Pelletti, N. L. Tsitsas, and G. Bianconi, "A new technique for efficient and accurate analysis of FSSs, EBGs and metamaterials," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1108-1116, Oct. 2011.
doi:10.1002/mop.26730

12. Mittra, R., R. K. Arya, and C. Pelletti, "A new technique for efficient and accurate analysis of arbitrary 3D FSSs, EBGs and metamaterials," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Chicago, IL, Jul. 2012.
doi:10.1109/APS.2012.6348604

13. Mittra, R., C. Pelletti, N. L. Tsitsas, and G. Bianconi, "A new technique for efficient and accurate analysis of FSSs, EBGs and metamaterials," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1108-1116, Apr. 2012.
doi:10.1002/mop.26730

14. Rashidi, A., H. Mosallaei, and R. Mittra, "Numerically efficient analysis of array of plasmonic nanorods illuminated by an obliquely incident plane wave using the characteristic basis function method," J. Comput. Theor. Nanosci., Vol. 10, 427-445, 2013.

15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

16. Hua, Y. and T. Sarkar, "Generalized pencil-of-functions method for extracting poles of an EM system from its transient response," IEEE Trans. on Antennas and Propag., Vol. 27, No. 2, 229-234, Feb. 1989.
doi:10.1109/8.18710

17. Pelletti, C. and R. Mittra, "Three-dimensional FSS elements with wide frequency and angular responses," IEEE Antennas and Propagation Society International Symposium, 1-2, Chicago, IL, Jul. 2012.