Vol. 53
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-07-18
Variational Electrodynamics of Atoms
By
Progress In Electromagnetics Research B, Vol. 53, 147-186, 2013
Abstract
We generalize Wheeler-Feynman electrodynamics with a variational problem for trajectories that are required to merge continuously into given past and future boundary segments. We prove that the boundary-value problem is well posed for two classes of boundary data and the well-posed solution in general has velocity discontinuities, henceforth a broken extremum. Along regular segments, broken extrema satisfy the Euler-Lagrange neutral differential delay equations with state-dependent deviating arguments. At points where velocities are discontinuous, broken extrema satisfy the Weierstrass-Erdmann corner conditions that energies and momenta are continuous. Electromagnetic fields of the finite trajectory segments are derived quantities that can be extended to a bounded region B of space-time. Extrema with a finite number N of velocity discontinuities have extended fields defined in B with the possible exception of N spherical surfaces, and satisfy the integral laws of classical electrodynamics for most surfaces and curves inside B. As an application, we study the hydrogenoid atomic model with mass ratio varying by three orders of magnitude to include hydrogen, muonium and positronium. For each model we construct globally bounded trajectories with vanishing far-fields using periodic perturbations of circular orbits. Our model uses solutions of the neutral differential delay equations along regular segments and a variational approximation for the head-on collisional segments (spikes). Each hydrogenoid model predicts a discrete set of finitely measured neighbourhoods of periodic orbits with vanishing far-fields right at the correct atomic magnitude and in quantitative and qualitative agreement with experiment and quantum mechanics. The spacings between consecutive discrete angular momenta agree with Planck's constant within thirty-percent, while orbital frequencies agree with a corresponding spectroscopic line within a few percent.
Citation
Jayme De Luca, "Variational Electrodynamics of Atoms," Progress In Electromagnetics Research B, Vol. 53, 147-186, 2013.
doi:10.2528/PIERB13051207
References

1. Wheeler, J. A. and R. P. Feynman, "Interaction with the absorber as the mechanism of radiation," Reviews of Modern Physics, Vol. 17, 157, 1945.
doi:10.1103/RevModPhys.17.157

2. Wheeler, J. A. and R. P. Feynman, "Classical electrodynamics in terms of interparticle action," Reviews of Modern Physics, Vol. 21, 425, 1949.
doi:10.1103/RevModPhys.21.425

3. De Luca, J., "Variational principle for the Wheeler-Feynman electrodynamics," Journal of Mathematical Physics, Vol. 50, 062701, 2009.
doi:10.1063/1.3154509

4. De Luca, J., "Minimizers with discontinuous velocities for the electromagnetic variational method," Physical Review E, Vol. 82, 026212, 2010.
doi:10.1103/PhysRevE.82.026212

5. Gelfand, I. M. and S. V. Fomin, Calculus of Variations, Dover, New York, 2000.

6. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley and Sons, New York, 1975.

7. Hale, J., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

8. Bellen, A. and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, NY, 2003.

9. Hartung, F., T. Krisztin, H.-O. Walther, and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Vol. 3, Handbook of Differential Equations, Elsevier, Amsterdam, 2006.

10. Feynman, R., R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Addison-Wesley Publishing, Palo Alto, 1964.

11. Fox, L. and The Numerical Solution of Two-point Boundary Problems in Ordinary Differential Equations, , Dover, New York, 1990.

12. Ascher, U. M. and L. R. Petzold, Computer Methods for Ordi-nary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi:10.1137/1.9781611971392

13. Martin, J. L., General Relativity, Prentice Hall, London, 1995.

14. De Luca, J., A. R. Humphries, and S. B. Rodrigues, "Finite element boundary value integration of Wheeler-Feynman electrodynamics," Journal of Computational and Applied Mathematics, Vol. 236, 3319-3337, 2012.
doi:10.1016/j.cam.2012.02.039

15. Gordon, W., "A minimizing property of Keplerian orbits," American Journal of Mathematics, Vol. 99, 961, 1977.
doi:10.2307/2373993

16. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.

17. Jabri, Y., The Mountain Pass Theorem, Cambridge University Press, Cambridge, 2003.

18. Currie, D. G., T. F. Jordan, and E. C. G. Sudarshan, "Relativistic invariance and hamiltonian theories of interacting particles," Reviews of Modern Physics, Vol. 35, 350, 1963.
doi:10.1103/RevModPhys.35.350

19. Marmo, G., N. Mukunda, and E. C. G. Sudarshan, "Relativistic particle dynamics-Lagrangian proof of the no-interaction theorem," Physical Review D, Vol. 30, 2110, 1984.
doi:10.1103/PhysRevD.30.2110

20. Schild, A., "Electromagnetic two-body problem," Physical Review, Vol. 131, 2762, 1963.
doi:10.1103/PhysRev.131.2762

21. Staruszkiewicz, A., "On stability of a circular motion in the relativistic Kepler problem," Acta Physica Polonica, Vol. XXXIII, 1007, 1968.

22. Andersen, C. M. and H. C. von Baeyer, "Almost circular orbits in classical action-at-a-distance electrodynamics," Physical Review D, Vol. 5, 2470, 1972.
doi:10.1103/PhysRevD.5.2470

23. De Luca, J., "Stiff three-frequency orbit of the hydrogen atom," Physical Review E, Vol. 73, 026221, 2006.
doi:10.1103/PhysRevE.73.026221

24. Andersen, C. M. and H. C. von Baeyer, "Circular orbits in classical relativistic two-body systems," Annals of Physics, Vol. 60, 67-84, 1970.
doi:10.1016/0003-4916(70)90482-3

25. Von Baeyer, H. C., "Semiclassical quantization of the relativistic Kepler problem," Physical Review D, Vol. 12, 3086, 1975.
doi:10.1103/PhysRevD.12.3086

26. Bohr, N., "On the constitution of atoms and molecules," Philosophical Magazine, Vol. 26, No. 1, 1913; Vol. 26, 476, 1913.

27. Bethe, H. A. and E. E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms, Dover, New York, 2008.

28. ter Haar, D., The Old Quantum Theory, Pergamon Press, New York, 1967.

29. De Luca, J., "Double-slit and electromagnetic models to complete quantum mechanics," Journal of Computational and Theoretical Nanoscience, Vol. 8, 1040-1051, 2011.
doi:10.1166/jctn.2011.1782

30. Dirac, P. A. M., "Classical theory of radiating electrons," Proceedings of the Royal Society of London, Ser. A, Vol. 167, 148, 1938.
doi:10.1098/rspa.1938.0124

31. De Luca, J., "Electrodynamics of Helium with retardation and self-interaction effects," Physical Review Letters, Vol. 80, 680, 1998.
doi:10.1103/PhysRevLett.80.680

32. De Luca, J., "Electrodynamics of a two-electron atom with retardation and self-interaction," Physical Review E, Vol. 58, 5727, 1998.
doi:10.1103/PhysRevE.58.5727

33. Mehra, J., The Beat of a Di®erent Drum: The Life and Science of Richard Feynman, Clarendon Press, Oxford, 1994.

34. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Physical Review, Vol. 115, 485, 1959.
doi:10.1103/PhysRev.115.485