1. Wheeler, J. A. and R. P. Feynman, "Interaction with the absorber as the mechanism of radiation," Reviews of Modern Physics, Vol. 17, 157, 1945.
doi:10.1103/RevModPhys.17.157
2. Wheeler, J. A. and R. P. Feynman, "Classical electrodynamics in terms of interparticle action," Reviews of Modern Physics, Vol. 21, 425, 1949.
doi:10.1103/RevModPhys.21.425
3. De Luca, J., "Variational principle for the Wheeler-Feynman electrodynamics," Journal of Mathematical Physics, Vol. 50, 062701, 2009.
doi:10.1063/1.3154509
4. De Luca, J., "Minimizers with discontinuous velocities for the electromagnetic variational method," Physical Review E, Vol. 82, 026212, 2010.
doi:10.1103/PhysRevE.82.026212
5. Gelfand, I. M. and S. V. Fomin, Calculus of Variations, Dover, New York, 2000.
6. Jackson, J. D., Classical Electrodynamics, 2nd Ed., John Wiley and Sons, New York, 1975.
7. Hale, J., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
8. Bellen, A. and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, NY, 2003.
9. Hartung, F., T. Krisztin, H.-O. Walther, and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Vol. 3, Handbook of Differential Equations, Elsevier, Amsterdam, 2006.
10. Feynman, R., R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Addison-Wesley Publishing, Palo Alto, 1964.
11. Fox, L. and The Numerical Solution of Two-point Boundary Problems in Ordinary Differential Equations, , Dover, New York, 1990.
12. Ascher, U. M. and L. R. Petzold, Computer Methods for Ordi-nary Differential Equations and Differential-algebraic Equations, SIAM, 1998.
doi:10.1137/1.9781611971392
13. Martin, J. L., General Relativity, Prentice Hall, London, 1995.
14. De Luca, J., A. R. Humphries, and S. B. Rodrigues, "Finite element boundary value integration of Wheeler-Feynman electrodynamics," Journal of Computational and Applied Mathematics, Vol. 236, 3319-3337, 2012.
doi:10.1016/j.cam.2012.02.039
15. Gordon, W., "A minimizing property of Keplerian orbits," American Journal of Mathematics, Vol. 99, 961, 1977.
doi:10.2307/2373993
16. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
17. Jabri, Y., The Mountain Pass Theorem, Cambridge University Press, Cambridge, 2003.
18. Currie, D. G., T. F. Jordan, and E. C. G. Sudarshan, "Relativistic invariance and hamiltonian theories of interacting particles," Reviews of Modern Physics, Vol. 35, 350, 1963.
doi:10.1103/RevModPhys.35.350
19. Marmo, G., N. Mukunda, and E. C. G. Sudarshan, "Relativistic particle dynamics-Lagrangian proof of the no-interaction theorem," Physical Review D, Vol. 30, 2110, 1984.
doi:10.1103/PhysRevD.30.2110
20. Schild, A., "Electromagnetic two-body problem," Physical Review, Vol. 131, 2762, 1963.
doi:10.1103/PhysRev.131.2762
21. Staruszkiewicz, A., "On stability of a circular motion in the relativistic Kepler problem," Acta Physica Polonica, Vol. XXXIII, 1007, 1968.
22. Andersen, C. M. and H. C. von Baeyer, "Almost circular orbits in classical action-at-a-distance electrodynamics," Physical Review D, Vol. 5, 2470, 1972.
doi:10.1103/PhysRevD.5.2470
23. De Luca, J., "Stiff three-frequency orbit of the hydrogen atom," Physical Review E, Vol. 73, 026221, 2006.
doi:10.1103/PhysRevE.73.026221
24. Andersen, C. M. and H. C. von Baeyer, "Circular orbits in classical relativistic two-body systems," Annals of Physics, Vol. 60, 67-84, 1970.
doi:10.1016/0003-4916(70)90482-3
25. Von Baeyer, H. C., "Semiclassical quantization of the relativistic Kepler problem," Physical Review D, Vol. 12, 3086, 1975.
doi:10.1103/PhysRevD.12.3086
26. Bohr, N., "On the constitution of atoms and molecules," Philosophical Magazine, Vol. 26, No. 1, 1913; Vol. 26, 476, 1913.
27. Bethe, H. A. and E. E. Salpeter, Quantum Mechanics of One- and Two-electron Atoms, Dover, New York, 2008.
28. ter Haar, D., The Old Quantum Theory, Pergamon Press, New York, 1967.
29. De Luca, J., "Double-slit and electromagnetic models to complete quantum mechanics," Journal of Computational and Theoretical Nanoscience, Vol. 8, 1040-1051, 2011.
doi:10.1166/jctn.2011.1782
30. Dirac, P. A. M., "Classical theory of radiating electrons," Proceedings of the Royal Society of London, Ser. A, Vol. 167, 148, 1938.
doi:10.1098/rspa.1938.0124
31. De Luca, J., "Electrodynamics of Helium with retardation and self-interaction effects," Physical Review Letters, Vol. 80, 680, 1998.
doi:10.1103/PhysRevLett.80.680
32. De Luca, J., "Electrodynamics of a two-electron atom with retardation and self-interaction," Physical Review E, Vol. 58, 5727, 1998.
doi:10.1103/PhysRevE.58.5727
33. Mehra, J., The Beat of a Di®erent Drum: The Life and Science of Richard Feynman, Clarendon Press, Oxford, 1994.
34. Aharonov, Y. and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Physical Review, Vol. 115, 485, 1959.
doi:10.1103/PhysRev.115.485