Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-07
Automatic Design of Broadband Gradient Index Metamaterial Lens for Gain Enhancement of Circularly Polarized Antennas
By
Progress In Electromagnetics Research, Vol. 141, 17-32, 2013
Abstract
A broadband gradient index (GRIN) metamaterial lens for gain enhancement of circularly polarized antennas has been automatically designed, fabricated and investigated. The GRIN metamaterial lens consists of an isotropic dielectric plate with a corresponding distribution of deep-subwavelength drill holes each with the same diameter. Such drill holes have a negligible influence on both the polarization state and the spectral response of the electromagnetic wave transmitting through the resulting GRIN metamaterial lens. Therefore, the GRIN metamaterial lens is polarization-insensitive and can efficiently transform spherical waves into planar waves over a very broad frequency range keeping the initial polarization states (e.g. linear or circular) scarcely changed. In the following we have derived analytical formulas that enable the setup of distribution rules for the drill holes on the plate. Based on these formulas, the GRIN metamaterial lens can be automatically designed and easily fabricated using circuit board engraving machines. The proposed GRIN metamaterial lens has been tested by placing it on the aperture of a circularly polarized conical horn antenna. The agreement between simulation and measurement results shows that the gain of the horn antenna has been significantly increased within the whole X-band (i.e. from 8 GHz to 12 GHz) and the largest gain enhancement reaches up to 5.7 dB. In particular, the axial ratio of the horn antenna with the GRIN metamaterial lens is less than 1.6 dB.
Citation
Fan-Yi Meng, Rui-Zhi Liu, Kuang Zhang, Daniel Erni, Qun Wu, Li Sun, and Joshua Le-Wei Li, "Automatic Design of Broadband Gradient Index Metamaterial Lens for Gain Enhancement of Circularly Polarized Antennas," Progress In Electromagnetics Research, Vol. 141, 17-32, 2013.
doi:10.2528/PIER13051104
References

1. Kock, W. E., "Metal-lens antennas," Proceedings of the IRE, Vol. 34, 828-836, 1946.
doi:10.1109/JRPROC.1946.232264

2. Yaokun, Q., "Dielectric lens antenna with scan reflector," IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, 98-101, 1997.
doi:10.1109/7.570712

3. Free, W., F. Cain, C. Ryan, Jr., C. Burns, and E. Turner, "High-power constant-index lens antennas," IEEE Transactions on Antennas and Propagation, Vol. 22, 582-584, 1974.
doi:10.1109/TAP.1974.1140839

4. Tang, C., "A dual lens antenna for limited electronic scanning," IEEE Antennas and Propagation Society International Symposium, 117-120, Urbana, IL, 1975.

5. Olver, A. D. and B. Philips, "Integrated lens with dielectric horn antenna," Electronics Letters, Vol. 29, 1150-1152, 1993.
doi:10.1049/el:19930769

6. Pavacic, A. P., D. L. del Rio, J. R. Mosig, and G. V. Eleftheriades, "Three-dimensional ray-tracing to model internal reflections in off-axis lens antennas," IEEE Transactions on Antennas and Propagation, Vol. 54, 604-612, 2006.
doi:10.1109/TAP.2005.863143

7. Abella, C., M. Marin, J. Vazquez, J. Peces, J. A. Romera, R. Graham, et al. "Artificial dielectric lens antennas: Assessment of their potential for space applications," 23rd European Microwave Conference, 896-898, Madrid, Spain, 1993.
doi:10.1109/EUMA.1993.336742

8. Al-Joumayly, M. A. and N. Behdad, "Wideband planar microwave lenses using sub-wavelength spatial phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 59, 4542-4552, 2011.
doi:10.1109/TAP.2011.2165515

9. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

11. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902(4), 2002.
doi:10.1103/PhysRevLett.89.213902

12. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A - Materials Science and Processing, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

13. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

14. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Physical Review E, Vol. 71, Mar. 2005.

15. Driscoll, T., D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, et al. "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters, Vol. 88, 081101(3), 2006.
doi:10.1063/1.2174088

16. Goldflam, M. D., T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, et al. "Reconfigurable gradient index using VO2 memory metamaterials," Applied Physics Letters, Vol. 99, 044103(3), Jul. 25, 2011.

17. Paul, O., B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, "Gradient index metamaterial based on slot elements," Applied Physics Letters, Vol. 96, 241110(3), Jun. 14, 2010.

18. Ruopeng, L., C. Qiang, J. Y. Chin, J. J. Mock, C. Tie Jun, and D. R. Smith, "Broadband gradient index microwave quasioptical elements based on non-resonant metamaterials," Optics Express, Vol. 17, 21030-21041, 2009.
doi:10.1364/OE.17.021030

19. Ruopeng, L., Y. Xin Mi, J. G. Gollub, J. J. Mock, C. Tie Jun, and D. R. Smith, "Gradient index circuit by waveguided metamaterials," Applied Physics Letters, Vol. 94, 073506(3), Feb. 16, 2009.

20. Smith, D. R., Y.-J. Tsai, and S. Larouche, "Analysis of a gradient index metamaterial blazed diffraction grating," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1605-1608, 2011.
doi:10.1109/LAWP.2011.2179632

21. Yang, X. M., X. Y. Zhou, Q. Cheng, H. F. Ma, and T. J. Cui, "Diffuse reflections by randomly gradient index metamaterials," Optics Letters, Vol. 35, 808-810, Mar. 15, 2010.
doi:10.1364/OL.35.000808

22. Liu, Z.-G., R. Qiang, and Z.-X. Cao, "A novel broadband Fabry-Perot resonator antenna with gradient index metamaterial superstrate," IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting, 1-4, Toronto, 2010.

23. Lei, M. Z. and C. T. Jun, "Experimental realization of a broadband bend structure using gradient index metamaterials," Optics Express, Vol. 17, 18354-18363, Sep. 28, 2009.

24. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials," Journal of Applied Physics, Vol. 110, 044904(8), Aug. 15, 2011.

25. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Applied Physics Letters, Vol. 95, 094107(3), Aug. 31, 2009.

26. Mei, Z. L., J. Bai, and T. J. Cui, "Gradient index metamaterials realized by drilling hole arrays," Journal of Physics D - Applied Physics, Vol. 43, 055404(6), Feb. 10, 2010.

27. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124(6), Nov. 2010.

28. Zhou, B., Y. Yang, H. Li, and T. J. Cui, "Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials," Journal of Applied Physics, Vol. 110, 084908(6), 2011.

29. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Communications, Vol. 1, 21(6), 06/01/online, 2010.

30. Liu, Z. J., S. W. Yang, and Z. P. Nie, "A dielectric lens antenna design by using the effective medium theories," International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-4, Chendu, China, 2010.

31. Petosa, A., A. Ittipiboon, and S. Thirakoune, "Investigation on arrays of perforated dielectric fresnel lenses," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 153, 270-276, 2006.
doi:10.1049/ip-map:20050193

32. Teshirogi, T. and T. Yoneyama, Modern Millimeter-wave Technologies, IOS Press, Burke, VA, USA, 2001.

33. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov,A. Sevastyanov, and V. Ssorin , "2D electronically beam steerable integrated lens antennas for mm-wave applications," 42nd European Microwave Conference (EuMC), 213-216, Amsterdam, the Netherlands, 2012.