Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-04
Analysis of Transmission Properties in a Photonic Quantum Well Containing Superconducting Materials
By
Progress In Electromagnetics Research, Vol. 140, 327-340, 2013
Abstract
Properties of wave transmission in a photonic quantum well (PQW) structure containing superconducting materials are theoretically investigated. We consider two possible PQW structures, (AB)P(CD)Q(AB)P-asymmetric and (AB)P(CD)Q(BA)P-symmetric, where the host photonic crystal (PC) (AB)P is made of dielectrics, A = SrTiO3, B = Al2O3, and the PQW (CD)Q contains C = A and superconducting layer D = YBa2Cu3O7-x, a typical high-temperature superconducting thin film. Multiple transmission peaks can be seen within the photonic band gap (PBG) of (AB)P and the number of peaks is directly determined by the stack number of PQW, i.e., it equals Q-1. Additionally, the results show that symmetric PQW structure is preferable to the design of a multichannel transmission filter. The effect of stack number of photonic barrier is also illustrated. Such a filter operating at terahertz with feature of multiple channels is of technical use in superconducting optoelectronic applications.
Citation
Tsung-Wen Chang, Jia-Wei Liu, Tzong-Jer Yang, and Chien-Jang Wu, "Analysis of Transmission Properties in a Photonic Quantum Well Containing Superconducting Materials," Progress In Electromagnetics Research, Vol. 140, 327-340, 2013.
doi:10.2528/PIER13050604
References

1. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2010, www.ece.rutgers.edu/~orfanidi/ewa.

2. Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Physical Review B, Vol. 57, R9388-9391, 1998.
doi:10.1103/PhysRevB.57.R9388

3. Pendry, J., "Calculating photonic band structure," Journal of Physics, Vol. 8, 1085-1108, 1995.

4. Qiao, F., C. Zhang, and J. Wan, "Photonic quantum-well structures: Multiple channeled filtering phenomena," Applied Physics Letters, Vol. 77, 3698-3701, 2000.
doi:10.1063/1.1330570

5. Lindner, N. H., G. Refael, and V. Galitski, "Floquet topological insulator in semiconductor quantum wells," Nature Physics, Vol. 7, 490-495, 2011.
doi:10.1038/nphys1926

6. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surface Review and Letters, Vol. 16, 171-190, 2009.
doi:10.1142/S0218625X09012482

7. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079

8. Jiang, Y., C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Physical Review B, Vol. 59, 9981-9986, 1999.
doi:10.1103/PhysRevB.59.9981

9. Yano, S., Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, and S. Yamaguchi, "Quantized state in a single quantum well structure of photonic crystals," Physical Review B, Vol. 63, 153316, 2001.
doi:10.1103/PhysRevB.63.153316

10. Chen, X., W. Lu, and S. C. Shen, "Photonic resonant transmission in the quantum-well structure of photonic crystals," Solid State Communications, Vol. 127, 541-544, 2003.
doi:10.1016/S0038-1098(03)00509-X

11. Liu, J., J. Sun, C. Huang, W. Hu, and D. Hunag, "Optimizing the spectral efficiency of photonic quantum well structure," Optik, Vol. 120, 35-39, 2009.
doi:10.1016/j.ijleo.2007.06.011

12. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Tunable multichannel filter in a photonic crystal containing semiconductor photonic quantum well," IEEE Photonics Journal, Vol. 4, No. 1, 293-290, 2012.

13. Chang, Y.-H., Y.-Y. Jhu, and C.-J. Wu, "Temperature and bias dependences of defect mode in a photonic crystal containing a photonic-quantum-well defect ," J. Optoelectron. Adv. Materials, Vol. 14, 185-192, 2012.

14. Xu, C., X. Xu, D. Han, X. Liu, C. P. Liu, and C. J.Wu, "Photonic quantum-well structures containing negative-index materials," Optics Communications, Vol. 280, 221-224, 2007.
doi:10.1016/j.optcom.2007.07.041

15. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal Optics Express,", Vol. 18, 27155-27166, 2010.

16. Hu, C.-A., C.-J. Wu, T.-J. Yang, and S.-L. Yang, "Analysis of effective plasma frequency in a superconducting photonic crystal," Journal of Optical Society of America B: Optical Physics, Vol. 30, 366-369, 2013.
doi:10.1364/JOSAB.30.000366

17. Poddubny, A. N., E. L. Ivchenko, and Yu. E. Lozovik, "Low-frequency spectroscopy of superconducting photonic crystals," Solid State Communications, Vol. 146, 143-147, 2008.
doi:10.1016/j.ssc.2008.02.003

18. Berman, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals: Numerical calculation of the band structure," Physical Review B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

19. Raymond Ooi, C. H., T. C. Au Yeung, C. H. Kam, and T. K. Lim, "Photonic band gap in a superconductor-dielectric superlattice," Physical Review B, Vol. 61, 5920-5926, 2000.
doi:10.1103/PhysRevB.61.5920

20. Wu, C.-J., C.-L. Liu, and T.-J. Yang, "Investigation photonic band structure in a one-dimensional superconducting photonic crystal," Journal of Optical Society of America B: Optical Physics, Vol. 26, 2089-2094, 2009.
doi:10.1364/JOSAB.26.002089

21. Hu, C.-A., J.-W. Liu, C.-J. Wu, T.-J. Yang, and S.-L. Yang, "Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure," Solid State Communications, Vol. 157, 54-57, 2013.
doi:10.1016/j.ssc.2012.12.022

22. Lyubchanskii, I. L., N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee, and Th. Rasing, "A one-dimensional photonic crystal with a superconducting defect layer," J. Optics: Pure and Appl. Optics, Vol. 36, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

23. Dadoenkova, N. N., A. E. Zabolotin, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, "One-dimensional photonic crystal with a complex defect containing an ultrathin superconducting sublayer," Journal of Applied Physics, Vol. 108, 093117, 2010.
doi:10.1063/1.3494034

24. Barvestani, J., "Analytical investigation of one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optics Communications, Vol. 284, 231-235, 2011.
doi:10.1016/j.optcom.2010.08.053

25. Becerra, G., E. Moncada-Villa, and J. C. Granada, "Local-ized modes in metamaterial-dielectric photonic crystals with a dielectric-superconductor pair defect," Journal of Superconductivity and Novel Magnetism, Vol. 25, 2163-2166, 2012.
doi:10.1007/s10948-012-1640-z

26. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

27. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor ," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

28. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
doi:10.2528/PIER12010311

29. Chang, T.-W., J.-J. Wu, and C.-J. Wu, "Complex photonic band structures in a photonic crystal containing lossy semiconductor InSb," Progress In Electromagnetics Research, Vol. 131, 153-167, 2012.

30. Hsu, H.-T., M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu, "A multichanneled filter in a photonic crystal containing coupled defects," Progress In Electromagnetics Research, Vol. 117, 379-392, 2011.

31. Zhang, H. F., S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.

32. Suthar, B., V. Kumar, A. Kumar, K. S. Singh, and A. Bhargava, "Thermal expansion of photonic band gap for one dimensional photonic crystal," Progress In Electromagnetics Research Letters, Vol. 32, 81-90, 2012.

33. Suthar, B. and A. Bhargava, "Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
doi:10.2528/PIERL11072208

34. Gharaati, A. and A. Serajfard, "Analytical calculation of band gap of a 1D planar ternary photonic crystal by simulating with a symmetric lossless transmission line," Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012.
doi:10.2528/PIERL11102007

35. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one dimensional ternary metallo-dielectric nanolayered photonic crystal," Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012.
doi:10.2528/PIERB11101410

36. Simserides, C. D. and G. P. Triberis, "A systematic study of electronic states in n-Al1x Ga11-x As/GaAs/n-AlxGa1-x as selectively doped double-heterojunction structures," Journal of Physics: Condensed Matters, Vol. 5, 6437-6446, 1993.
doi:10.1088/0953-8984/5/35/009