Vol. 52
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-28
Reduction of Numerical Dispersion of Adi-FDTD Method with Quasi Isotropic Spatial Difference Scheme
By
Progress In Electromagnetics Research B, Vol. 52, 363-382, 2013
Abstract
In this paper, the difference scheme of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is replaced by the quasi isotropic (QI) spatial difference scheme to improve its numerical dispersion characteristics. The unconditional stability advantage of QI-ADI-FDTD is analytically proven and numerically verified. The numerical dispersion of the novel method can be dramatically reduced by choosing proper weighting factor. An example is simulated to demonstrate the accuracy and efficiency of the proposed method.
Citation
Yilong Zhang, Donglin Su, and Feijiao Liu, "Reduction of Numerical Dispersion of Adi-FDTD Method with Quasi Isotropic Spatial Difference Scheme," Progress In Electromagnetics Research B, Vol. 52, 363-382, 2013.
doi:10.2528/PIERB13050511
References

1. Dai, J., Z. Z. Chen, D. L. Su, and X. Y. Zhao, "Stability analysis and improvement of the conformal ADI-FDTD methods," IEEE Trans. on Antennas Propag., Vol. 59, No. 6, 2248-2258, Jun. 2011.
doi:10.1109/TAP.2011.2143686

2. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.

3. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research , Vol. 128, 153-170, 2012.

4. Wang, W., P.-G. Liu, and Y.-J. Qin, "An unconditional stable 1D-FDTD method for modeling transmission lines based on precise split-step scheme," Progress In Electromagnetics Research , Vol. 135, 245-260, 2013.

5. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "Two effcient unconditionally-stable four-stages split-step FDTD methods with low numerical dispersion," Progress In Electromagnetics Research B, Vol. 48, 1-22, 2013.

6. Heh, D. Y. and E. L. Tan, "Unified e±cient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B , Vol. 32, 217-242, 2011.

7. Gao, J.-Y. and H.-X. Zheng, "One-step leapfrog ADI-FDTD method for lossy media and its stability analysis," Progress In Electromagnetics Research Letters, Vol. 40, 49-60, 2013.

8. Dai, J., D. L. Su, and X. Y. Zhao, "A scheme of lightning pulse source for the FDTD analysis of near-feld interaction with airplane," 8th International Symposium on Antennas, Propagation and EM Theory, ISAPE 2008, 843-846, Nov. 2008.

9. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm or large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

10. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods ," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

11. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using theFDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.

12. Markovich , D. L., K. S. Ladutenko, and P. A. Belov, "Performance of FDTD method CPU implementations for simulation of electromagnetic processes," Progress In Electromagnetics Research, Vol. 139, 655-670, 2013.

13. Ashutosh and P. K. Jain, "FDTD analysis of the dispersion characteristics of the metal PBG structures," Progress In Electromagnetics Research B, Vol. 39, 71-88, 2012.

14. Guo, X.-M., Q.-X. Guo, W. Zhao, and W. Yu, "Parallel FDTD simulation using numa acceleration technique," Progress In Electromagnetics Research Letters, Vol. 28, 1-8, 2012.

15. Zheng, F. H., Z. Z. Chen, and J. Z. Zhan, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. on Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.

16. Wang, M. H., Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 118-121, 2003.

17. Fu, W. M. and E. L. Tan, "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas Propag., Vol. 54, No. 6, 1836-1842, Jun. 2006.

18. Ahmed, I. and Z. Chen, "Dispersion-error optimized ADI FDTD," Proc. IEEE MTT-S Int. Microw. Symp. Dig., 173-176, Jun. 2006.

19. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in FDTD method through artificial anisotropy," IEEE Trans. on Microwave Theory Tech., Vol. 48, No. 4, 582-588, Apr. 2000.

20. Zheng, H. X. and K. W. Leung, "An effcient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. on Microwave Theory Tech., Vol. 53, No. 7, 2295-2301, Jul. 2005.

21. Zhang, Y., S. W. Lu, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite di®erence time-domain method with artificial anisotropy," IEEE Trans. on Microwave Theory Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.

22. Lee, J. and B. Fornberg, "A split step approach for the 3-D Maxwell's equations," J. Comput. Appl. Math., Vol. 158, 485-505, Mar. 2003.

23. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "E±cient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 9, 1046-1047, Sep. 2005.

24. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.

25. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. on Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.