Vol. 41
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-06-09
A Novel Tunable Antenna at THz Frequencies Using Graphene-Based Artificial Magnetic Conductor (AMC)
By
Progress In Electromagnetics Research Letters, Vol. 41, 29-38, 2013
Abstract
In this paper, a novel tunable antenna using graphene-based artificial magnetic conductor (AMC) is proposed and investigated. The resonance frequency of the AMC ground plane can be electrically tuned by applying a gate voltage. A bowtie-shaped antenna is mounted above the 15×15 AMC units. It is observed that the operating frequency of the antenna system shifts in a large range when varying the external electric field. The bandwidth of the antenna system can reach as high as 47% with a gain higher than 9 dB.
Citation
Xuchen Wang, Wen-Sheng Zhao, Jun Hu, and Tian Zhang, "A Novel Tunable Antenna at THz Frequencies Using Graphene-Based Artificial Magnetic Conductor (AMC)," Progress In Electromagnetics Research Letters, Vol. 41, 29-38, 2013.
doi:10.2528/PIERL13050203
References

1. Bray, M. G. and D. H. Werner, "A broadband open-sleeve dipole antenna mounted above a tunable EBG AMC ground plane," Int. Symp. Antennas Propag. Society, Vol. 2, No. 10, 1147-1150, 2004.

2. Hu, J., C. S. Yan, and Q. C. Lin, "A new patch antenna with metamaterial cover," J. Zhejiang Univ. Sci. A, Vol. 7, No. 1, 89-94, 2006.

3. Costa, F., S. Talarico, A. Monorchio, and M. F. Valeri, "An active AMC ground plane for tunable low-profile antenna," Int. Symp. Antennas Propag. Society, 1-4, San Diego, CA, 2008.

4. Veysi, M. and M. Shafaee, "EBG frequency response tuning using an adjustable air-gap," Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010.

5. Zhao, L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.

6. Padooru, Y. R., A. B. Yakovlev, C. S. R. Kaipa, G. W. Hanson, F. Medina, and F. Mesa, "Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies," Phys. Rev. B, Vol. 87, 115401, 2013.

7. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas Propag. Wireless Lett., Vol. 12, 76-79, 2013.

8. Geim, K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, 183-191, 2007.

9. Hotopan, G. R., S. Ver-Hoeye, C. Vazquez-Antuna, R. Camblor-Diaz, M. G. Fernandez, F. Las Heras Andres, P. Alvarez, and R. Menendez, "Millimeter wave microstrip mixer based on graphene," Progress In Electromagnetics Research, Vol. 118, 57-69, 2011.

10. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and R. Plana, "Terahertz antenna based on graphene," J. Appl. Phys., Vol. 107, 104313, 2010.

11. Huang, Y., L. S. Wu, and J. F. Mao, "Design of a beam reconfigurable THz antenna with graphene-based switchable high-mpedance surfaces," IEEE Trans. on Nanotechnol., Vol. 11, No. 4, 836-842, 2012.

12. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Appl. Phys. Lett., Vol. 10, No. 21, 214102, 2012.

13. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, Inc., 2003.

14. Luukkonen, , O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Trans. on Antennas Propag., Vol. 56, No. 6, 1624-1632, 2008.

15. Hanson, G. W., "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Trans. on Antennas Propag., Vol. 56, No. 3, 747-757, 2008.

16. Bolotin, K. I., K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., Vol. 146, 351-355, 2008.

17. Lovat, G., P. Burghignoli, and R. Araneo, "Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides," IEEE Trans. Electromagn. Compat., Vol. 55, No. 2, 328-333, 2013.

18. Cui, J. P., W. S. Zhao, W. Y. Yin, and J. Hu, "Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects," IEEE Trans. on Electromagn. Compat., Vol. 54, No. 1, 126-132, 2012.

19. Carrasco, E., M. Tamagnone, J. Perruisseau-Carrier, and , "Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection," Appl. Phys. Lett., Vol. 102, No. 10, 10410, 2013.