Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-03
Experimental Determination of the Performance of Rice Husk-Carbon Nanotube Composites for Absorbing Microwave Signals in the Frequency Range of 12.4-18 GHz
By
Progress In Electromagnetics Research, Vol. 140, 795-812, 2013
Abstract
Composites of rice husks and carbon nanotubes (RHCNTs) are an innovation in improving the absorption of microwave signals. Rice husks, which are an agricultural waste material, have been found to possess a significant propensity for absorbing microwave signals. Studies have shown that both rice husks and carbon nanotubes (CNTs)have high percentages of carbon. Thus, in this paper, we present the results of our experimental study in which we varied the ratios of rice husks and CNTs in the composite materials and determined the dielectric properties of the composites and measured their abilities to absorb microwave signals. The experimental microwave absorber was fabricated using rice husks and CNTs, which increased the dielectric constant and the loss factor.Complex permittivity was measured using an Agilent dielectric probe.The RHCNT compositeswere investigated to determine their reflection loss and absorption performance as microwave absorbers. For the fabricated microwave absorber,we used the rectangular waveguide measurement technique to study reflection loss, transmission loss, and absorption performance in the frequency range of12.4 - 18 GHz. Carbon has an essential role in the absorber due to its ability reflect/absorb microwave signals.Thus, we compared the abilities of a pure rice-husk (PRH) absorber and RHCNT composites absorbers to absorb microwave signals.
Citation
Yeng Seng Lee, Mohd Fareq Bin Abd Malek, Ee Meng Cheng, Wei Wen Liu, You Kok Yeow, Muhammad Nadeem Iqbal, Fwen Hoon Wee, Shing Fhan Khor, Liyana Zahid, and Mohd Fariz bin Haji Abd Malek, "Experimental Determination of the Performance of Rice Husk-Carbon Nanotube Composites for Absorbing Microwave Signals in the Frequency Range of 12.4-18 GHz ," Progress In Electromagnetics Research, Vol. 140, 795-812, 2013.
doi:10.2528/PIER13042407
References

1. Malek, F., H. Nornikman, and O. Nadiah, "Pyramidal microwave absorber design from waste material using rice husk and rubber tire dust," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 4, No. 1, 2012.

2. Cheng, E. M., M. F. B. A. Malek, M. Ahmed, K. Y. You, K. Y. Lee, and H. Nornikman, "The use of dielectric mixture equations to analyze the dielectric properties of a mixture of rubber tire dust and rice husks in a microwave absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012.

3. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.

4. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.

5. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the emc performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012.

6. Malek, F., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.

7. Liu, Q. and X. Li, "Study on the microwave permeability of the CNT complex in 2-18 GHz," Applied Physics Research, Vol. 2, No. 2, 185, 2010.

8. Chojnacki, E., Q. Huang, A. K. Mukherjee, et al. "Microwave absorption properties of carbon nanotubes dispersed in alumina ceramic," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 659, No. 1, 49-54, 2011.

9. Ghasemi, A., "Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 23, 3133-3137, 2011.

10. Hou, C., T. Li, T. Zhao, et al. "Microwave absorption and mechanical properties of La(NO3)3-doped multi-walled carbon nanotube/polyvinyl chloride composites," Materials Letters, Vol. 67, No. 1, 84-87, 2012.

11. Liu, G., L. Wang, G. Chen, et al. "Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber," Journal of Alloys and Compounds, Vol. 514, 183-188, 2012.

12. Liu, J., Y. Wang, Z. Qu, et al. "2-μm passive q-switched mode-locked tm3+: Yap laser with single-walled carbon nanotube absorber," Optics & Laser Technology, Vol. 44, No. 4, 960-962, 2012.

13. Zhu, H., L. Zhang, L. Zhang, et al. "Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing," Materials Letters, Vol. 64, No. 3, 227-230, 2010.

14. Arjmand, M., M. Mahmoodi, G. A. Gelves, et al. "Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate," Carbon, Vol. 49, No. 11, 3430-3440, 2011.

15. Gupta, A. and V. Choudhary, "Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites," Composites Science and Technology, Vol. 71, No. 13, 1563-1568, 2011.

16. Kim, Y.-Y., J. Yun, H.-I. Kim, et al. "Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes," Journal of Industrial and Engineering Chemistry, Vol. 18, No. 1, 392-398, 2012.

17. Nam, I. W., H. K. Kim, and H. K. Lee, "Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites," Construction and Building Materials, Vol. 30, 480-487, 2012.

18. Singh, A. P., B. K. Gupta, M. Mishra, et al. "Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties," Carbon, Vol. 56, 86-96, 2013.

19. Likodimos, V., S. Glenis, N. Guskos, and C. L. Lin, "Magnetic and electronic properties of multiwall carbon nanotubes," Physical Review B, Vol. 68, No. 4, 68, 2003.

20. Liu, W.-W., A. Aziz, S.-P. Chai, et al. "Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes," Carbon, Vol. 50, No. 1, 342, 2012.

21. Liu, W.-W., A. Aziz, S.-P. Chai, et al. "The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition," Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 8, 1535-1542, 2011.

22. Cha, S. I., K. T. Kim, K. H. Lee, et al. "Mechanical and electrical properties of cross-linked carbon nanotubes," Carbon, Vol. 46, No. 3, 482-488, 2008.

23. Logakis, E., C. H. Pandis, P. Pissis, et al. "Highly conducting poly (methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties," Composites Science and Technology, Vol. 71, No. 6, 854-862, 2011.

24. Spitalsky, Z., D. Tasis, K. Papagelis, et al. "Carbon nanotube-polymer composites: Chemistry, processing, and electrical properties," Progress in Polymer Science, Vol. 35, No. 3, 357-401, 2010.

25. Wang, X., Q. Jiang, W. Xu, et al. "Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites," Carbon, Vol. 53, 145-152, 2013.

26. Sinha, N. and J. T.-W. Yeow, "Carbon nanotubes for biomedical applications," IEEE Transactions on Nanobioscience, Vol. 4, No. 2, 2005.

27. Wong, E. W., P. E. Sheehan, and C. M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanotubes and nanorods," Science, Vol. 277, 1971-1975, 1997.

28. Li, S., R. Chen, S. Anwar, W. Lu, Y. Lai, H. Chen, B. Hou, F. Ren, and B. Gu, "Applying effective medium theory in characterizing dielectric constant of solids," Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012.

29. Hasa, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.

30. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.

31. Sabouroux, P. and D. Ba, "Epsimu, a tool for dielectric properties measurement of porous media: Application in wet granular materials characterization," Progress In Electromagnetics Research B, Vol. 29, 191-207, 2011.

32. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.

33. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, Vol. 42, 131-142, 2003.

34. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

35. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-14, 2012.

36. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.

37. Zivkovic, I. and A. Murk, "Characterization of open cell SIC foam material," Progress In Electromagnetics Research B, Vol. 38, 225-239, 2012.

38. Lee, H.-M. and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

39. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental study on a flanged parallel-plate dielectric waveguide probe for detection of buried inclusions," Progress In Electromagnetics Research, Vol. 111, 91-104, 2011.

40. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, Wiley, 2002.

41. Baker, G. S. and H. M. Jol, Stratigraphic Analyses Using Ground Penetrating Radar, Geological Society of America, Incorporated, 2007.