Vol. 31
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-06-14
Proposing a Wavelet Based Meshless Method for Simulation of Conducting Materials
By
Progress In Electromagnetics Research M, Vol. 31, 159-169, 2013
Abstract
This work focuses on the development of multiscale meshless technique in area of scattered fields from paramagnetic scatterers. The radial point interpolation method (RPIM), as the most common meshless technique, is employed for above purpose. Due to high frequency analysis, some special considerations must be applied, particularly in subdomains near the incident face. So, to ensure the accuracy, a multiscale meshless technique in wavelet frames sounds necessary. Simulating the scatterers using above method, specifically an elliptic paramagnetic scatterer, shows some efficient aspects such as less computational time and more precision compared with some other numerical methods.
Citation
Arman Afsari, and Masoud Movahhedi, "Proposing a Wavelet Based Meshless Method for Simulation of Conducting Materials," Progress In Electromagnetics Research M, Vol. 31, 159-169, 2013.
doi:10.2528/PIERM13042312
References

1. Liu, G. R. and Y. T. Gu, "An Introduction to Meshfree Methods and Their Programming," Springer, New York, 2005.

2. Zhang, Y., K. R. Shao, D. X. Xie, and J. D. lavers, "Meshless method based on orthogonal basis for computational electromagnetics," IEEE Trans. Magn., Vol. 41, No. 5, 1432-1435, May 2005.
doi:10.1109/TMAG.2005.844545

3. Yang, S. Y., S. L. Ho, P. H. Ni, and G. Z. Ni, "A combined waveletFE method for transient electromagnetic-field computation," IEEE Trans. Magn., Vol. 42, No. 4, 571-574, Apr. 2006.
doi:10.1109/TMAG.2006.871427

4. Manzin, A. and O. Bottauscio, "Element-free Galerkin method for the analysis of electromagnetic-wave scattering," IEEE Trans. Magn., Vol. 44, No. 6, 1366-1369, Jun. 2008.
doi:10.1109/TMAG.2007.916444

5. Hubbert, S., "Closed form representations for a class of compactly supported radial basis functions," Adv. Comput. Math., Vol. 36, 115-136, 2012.
doi:10.1007/s10444-011-9184-5

6. Zhu, H., L. Tang, S. Song, Y. Tang, and D. Wang, "Symplectic wavelet collocation method for Hamiltonian wave equations," J. Comput. Phys., Vol. 229, 2550-2572, 2010.
doi:10.1016/j.jcp.2009.11.042

7. Davydova, O. and D. Oanh, "On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation," Comput. Math. Appl., Vol. 62, 2143-2161, 2011.
doi:10.1016/j.camwa.2011.06.037

8. Zheng, G., B.-Z. Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetic Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

9. Ala, G., E. Francomano, and F. Viola, "A wavelet operator on the interval in solving Maxwell's equations," Progress In Electromagnetic Research Letters, Vol. 27, 133-140, 2011.
doi:10.2528/PIERL11090505

10. Lashab, M., C. Zebiri, and F. Benabdelaziz, "Wavelet-based moment method and physical optics use on large reflector antennas," Progress In Electromagnetic Research M, Vol. 2, 189-200, 2008.
doi:10.2528/PIERM08042902

11. Iqbal, A. and V. Jeoti, "A novel wavelet-Galerkein method for modeling radio wave propagation in tropospheric ducts," Progress In Electromagnetic Research B, Vol. 36, 35-52, 2012.
doi:10.2528/PIERB11091201

12. Lashab, M., F. Benabdelaziz, and C.-E. Zebiri, "Analysis of electromagnetics scattering from reflector and cylindrical antennas using wavelet-based moment method," Progress In Electromagnetic Research, Vol. 76, 357-368, 2007.
doi:10.2528/PIER07071401

13. Boggess, A. and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Prentice Hall, Upper Saddle River, 2001.

14. Razmjoo, H., M. Movahhedi, and A. Hakimi, "Modification on a fast meshless method for electromagnetic field computations," ET Sci. Meas. Technol., Vol. 5, No. 5, 175-182, Sep. 2011.
doi:10.1049/iet-smt.2011.0041

15. Afsari, A. and M. Movahhedi, "A modified wavelet-meshless method for lossy magnetic dielectrics at microwave frequencies," IEEE Trans. Magn., Vol. 49, No. 3, 963-967, Mar. 2013.
doi:10.1109/TMAG.2012.2228171

16. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley and Sons, Ltd., 2002.