Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-26
Creation of Super-Resolution Non-Diffraction Beam by Modulating Circularly Polarized Lightwith Ternary Optical Element
By
Progress In Electromagnetics Research, Vol. 140, 589-598, 2013
Abstract
In order to obtain a super-resolution non-diffraction beam, we propose a fast searching method to design a ternary optical element combined with the circularly polarized light. The optimized results show that a beam with a spot size of 0.356λ and depth of focus of 8.28λ can be achieved by focusing with an oil lens of numerical aperture NA = 1.4 and refractive index of oil n = 1.5. The analysis reveals that the spot size of transverse component is 0.273λ, indicating that the super-resolution effect mainly comes from the transverse component. The spot size inside the media can theoretically reach down to 0.273λ because the spot size inside the media is mainly determined by the transverse component.
Citation
Jingsong Wei, Yikun Zha, and Fuxi Gan, "Creation of Super-Resolution Non-Diffraction Beam by Modulating Circularly Polarized Lightwith Ternary Optical Element," Progress In Electromagnetics Research, Vol. 140, 589-598, 2013.
doi:10.2528/PIER13042002
References

1. Grosjean, T., D. Courjon, and C. Bainier, "Smallest lithographic masks generated by optical focusing systems," Opt. Lett., Vol. 32, 976-978, 2007.
doi:10.1364/OL.32.000976

2. Kim, W., N. Park, Y. Yoon, H. Choi, and Y. Park, "Investigation of near-field imaging characteristics of radial polarization for application to optical data storage," Opt. Rev., Vol. 14, 236-242, 2007.
doi:10.1007/s10043-007-0236-5

3. Quabis, S., R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun., Vol. 179, 1-7, 2000.
doi:10.1016/S0030-4018(99)00729-4

4. Grosjean, T. and D. Courjon, "Smallest focal spots," Opt. Commun., Vol. 272, 314-319, 2007.
doi:10.1016/j.optcom.2006.11.043

5. Pazynin, L. A. and G. O. Kryvchikova, "Focusing properties of Maxwell's fish eye medium," Progress In Electromagnetics Research, Vol. 131, 425-440, 2012.

6. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901

7. Martinez-Corral, M., R. Martinez-Cuenca, I. Escobar, and G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams," Appl. Phys. Lett., Vol. 85, 4319-4321, 2004.
doi:10.1063/1.1818729

8. Khonina, S. and I. Golub, "Optimization of focusing of linearly polarized light," Opt. Lett., Vol. 36, 352-354, 2011.
doi:10.1364/OL.36.000352

9. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER11042005

10. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

11. Rogers, E. T. F., J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Materials, Vol. 11, 432-435, 2012.
doi:10.1038/nmat3280

12. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.

13. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coating via surface plasmonsmodes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010

14. Yan, W., J.-D. Xu, N.-J. Li, and W. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011.

15. Wang, H., L. Shi, G. Yuan, X. Miao, W. Tan, and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693

16. Wang, H., L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics ," Nat. Photonics, Vol. 2, 501-505, 2008.
doi:10.1038/nphoton.2008.127

17. Kuang, C., X. Hao, X. Liu, T. Wang, and Y. Ku, "Formation of sub-half-wavelength focal spot with ultra long depth of focus," Opt. Commun., Vol. 284, 1766-1769, 2011.
doi:10.1016/j.optcom.2010.12.055

18. Lerman, G. and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express, Vol. 16, 4567-4581, 2008.
doi:10.1364/OE.16.004567

19. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A, Vol. 253, 358-379, 1959.
doi:10.1098/rspa.1959.0200