Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-30
Novel Symmetrical Coupled-Line Directional Coupler Based on Resonant-Type Composite Right-/Left-Handed Transmission Lines
By
Progress In Electromagnetics Research, Vol. 140, 213-226, 2013
Abstract
A novel kind of symmetrical backward-wave coupled-line coupler with arbitrary coupling level is proposed in this paper which is based on resonant-type composite right-/left-handed transmission lines (CRLH TLs). First, an equivalent circuit model and procedure for circuit parameters extraction are presented to reveal the inherent nature of the unit cell of the CRLH coupler. Then a CRLH TL composed of four cascaded unit cells is demonstrated to point out the way to achieve balanced condition. At last, even/odd modes analysis based on full-wave simulation is employed to explain the operating principle of the coupler. Both quasi 0-dB and 3-dB CRLH couplers are demonstrated experimentally. The quasi 0-dB backward coupling is achieved over the range from 1.69 GHz to 2.19 GHz (-3 dB bandwidth in measurement), which represents the fractional bandwidth 25.8%. The maximum coupling coefficient 0.52 dB is obtained at 1.96 GHz, where the directivity and isolation is 20.8 dB and 21.3 dB, respectively. The 3-dB couplers shows an amplitude balance of 2 dB and quadrature phase balance of 90±5 degree over the fractional bandwidth of around 11.4%, from 1.99 to 2.23 GHz.
Citation
Yanbing Ma, Huai-Wu Zhang, and Yuanxun Li, "Novel Symmetrical Coupled-Line Directional Coupler Based on Resonant-Type Composite Right-/Left-Handed Transmission Lines," Progress In Electromagnetics Research, Vol. 140, 213-226, 2013.
doi:10.2528/PIER13041803
References

1. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 980-992, Mar. 2004.
doi:10.1109/TMTT.2004.823579

2. Nguyen, H. V. and C. Caloz, "Simple-design and compact MIM CRLH microstrip 3-dB coupled-line coupler," IEEE MTT-S International Microwave Symposium Digest, 1733-1736, San Francisco, CA, Jun. 2006.

3. Nguyen, H. V. and C. Caloz, "Generalized coupled-mode approach of metamaterial coupled-line couplers: Coupling theory, phenomenological explanation, and experimental demonstration," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 1029-1039, May 2007.
doi:10.1109/TMTT.2007.895646

4. Gil, M., J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, "Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1296-1304, 2007.
doi:10.1109/TMTT.2007.897755

5. De la Mata Luque, T. M., N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012.

6. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

7. Segovia-Vargas, D., F. J. Herraiz-Martinez, E. Ugarte-Munoz, L. E. Garcia-Munoz, and V. Gonzalez-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Electromagnetics Research, Vol. 133, 91-115, 2013.

8. Mujumdar, M. D., J. Cheng, and A. Alphones, "Double periodic composite right/left handed transmission line based leaky wave antenna by singular perturbation method," Progress In Electromagnetics Research, Vol. 132, 113-128, 2012.

9. Cao, W.-Q., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Novel phase-shifting characteristic of CRLH Tl and its application in the design of dual-band dual-mode dual-polarization antenna," Progress In Electromagnetics Research, Vol. 131, 375-390, 2012.

10. Shamaileh, K. A. A., A. M. Qaroot, and N. I. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

11. Nguyen, H. V. and C. Caloz, "Dual-band CRLH branch-line coupler in MIM technology," Microw. Opt. Techn. Let., Vol. 48, No. 11, 2331-2333, 2006.
doi:10.1002/mop.21948

12. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "Broadband resonant-type metamaterial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 97-99, Feb. 2007.
doi:10.1109/LMWC.2006.890327

13. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line," Antennas and Propagation Society International Symposium, 412-415, Jun. 2002.

14. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, 2004.
doi:10.1109/LMWC.2004.828029

15. Liu, L., C. Caloz, C. C. Chang, and T. Itoh, "Forward coupling phenomena between artificial left-handed transmission lines," J. Appl. Phys., Vol. 92, No. 9, 5560-5565, Aug. 2002.
doi:10.1063/1.1512682

16. Caloz, C., A. Sanada, L. Liu, and T. Itoh, "A broadband left-handed (LH) coupled-line backward coupler with arbitrary coupling level," IEEE MTT-S International Microwave Symposium Digest, 317-320, Philadelphia, PA, Jun. 2003.

17. Jarauta, E., M. Laso, T. Lopetegi, F. Falcone, M. Beruete, J. Baena, et al. "Metamaterial microstrip backward couplers for fully planar fabrication techniques," Proc. Joint 29th Int. Conf. Infrar. Millim. Waves 12th Int. Conf. Terahertz Electron., 185-186, Sep. 27-Oct. 1, 2004.

18. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 10, 543-545, 2006.
doi:10.1109/LMWC.2006.882400

19. Gil, M., J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "On the transmission properties of left-handed microstrip lines implemented by complementary split rings resonators," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 19, No. 2, 87-103, 2006.
doi:10.1002/jnm.601

20. Gil, I., J. Bonache, M. Gil, J. Garcia-Garcia, and F. Martin, "Left-handed and right-handed transmission properties of microstrip lines loaded with complementary split rings resonators," Microw. Opt. Techn. Let., Vol. 48, No. 12, 2508-2511, 2006.
doi:10.1002/mop.22011

21. Lin, X., P. Su, Y. Fan, and Z. B. Zhu, "Improved CRLH-TL with arbitrary characteristic impedance and its application in hybrid ring design," Progress In Electromagnetics Research, Vol. 124, 249-263, 2012.
doi:10.2528/PIER11112303

22. Mongia, R., I. J. Bahl, P. Bhartia, and S. J. Hong, RF and Microwave Coupled-line Circuits, Artech House, Norwood, MA, 1999.

23. Caloz, C. and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE MTT-S International Microwave Symposium Digest, 195-198, Philadelphia, PA, Jun. 2003.