Vol. 31
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-06-11
A Methodology for the Design of Microwave Systems and Circuits Using an Evolutionary Algorithm
By
Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013
Abstract
This work presents a methodology for the development of microwave systems and circuits. Starting from the system decomposition, the proposed method is aimed at estimates the requirements of each component of the system taking into account the effects on the whole system and the interactions with the others microwave components. The obtained requirements are then used to design or optimize each device with standard design methodologies or CAD tools. The problem is recast as an optimization one by defining a suitable cost function able to take into account the interactions between all the components of the system. The cost function is then minimized with an evolutionary optimization technique, namely the particle swarm optimizer. The obtained preliminary results, concerning the design of a broad-band bidirectional amplifier, demonstrate the potentialities of the proposed approach.
Citation
Massimo Donelli, Md. Rukanuzzaman, and Carlos E. Saavedra, "A Methodology for the Design of Microwave Systems and Circuits Using an Evolutionary Algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013.
doi:10.2528/PIERM13041607
References

1. Pozar, D., Microwave Engineering, John Wiley & Sons, 1998.

2. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 11, 2517-2523, Nov. 1995.
doi:10.1109/22.473172

3. Wincza, K. and S. Gruszczynski, "Miniaturized quasi-lumped coupled-line single section and multisection directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 2924-2931, Nov. 2010.

4. Chiang, Y. C. and C. Y. Chen, "Design of a wideband lumped-element 3-dB quadrature coupler," IEEE Transactions on Microwave Theory and Techniques, Vol. 9, 476-479, 2001.
doi:10.1109/22.910551

5. Caorsi, S., M. Donelli, A. Massa, and M. Raffetto, "A parallel implementation of an evolutionary-based automatic tool for microwave circuit synthesis: Preliminary results," Microwave and Optical Technology Letters, Vol. 35, No. 3, Nov. 2002.

6. Azaro, R., F. De Natale, M. Donelli, and A. Massa, "PSO-based optimization of matching loads for lossy transmission lines," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1485-1487, 2006.
doi:10.1002/mop.21738

7. Donelli, M., R. Azaro, A. Massa, and M. Raffetto, "Unsupervised synthesis of microwave components by means of an evolutionary-based tool exploiting distributed computing resources," Progress In Electromagnetics Research, Vol. 56, 93-108, 2006.
doi:10.2528/PIER05010901

8. Robinson, J., S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna," IEEE Antennas Propagat. Soc. Int. Symp. Dig., Vol. 1, 314-317, 2002.

9. Boeringer, D. and D. Werner, "Efficiency-constrained particle swarm optimization of a modified Bernstein polynomial for conformal array excitation amplitude synthesis," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2662-2671, 2005.
doi:10.1109/TAP.2005.851783

10. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068

11. Azaro, R., M. Donelli, M. Benedetti, P. Rocca, and A. Massa, "A GSM signals based positioning technique for mobile applications," Microwave and Optical Technology Letters, Vol. 50, No. 4, 2128-2130, 2008.
doi:10.1002/mop.23568

12. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

13. Kennedy, J., R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, 2001.

14. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

15. Clerc, M. and J. Kennedy, "The particle swarm explosion, stability, and convergence in a multidimensional complex space," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, 58-73, 2012.
doi:10.1109/4235.985692

16. Donelli, M., R. Azaro, F. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 888-898, Mar. 2006.
doi:10.1109/TAP.2006.869912

17. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3459-3468, 2005.
doi:10.1109/TAP.2005.858842

18. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

19. Adly, A. and S. Abd-El-Hafiz, "Using the particle swarm evolutionary approach in shape optimization and field analysis of devices involving nonlinear magnetic media," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3150-3152, 2006.
doi:10.1109/TMAG.2006.880103

20. Ho, S., S. Yang, G. Ni, and H. Wong, "A particle swarm optimization method with enhanced global search ability or design optimizations of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1107-1110, 2006.
doi:10.1109/TMAG.2006.871426

21. Genovesi, S., A. Monorchio, R. Mittra, and G. Manara, "A subboundary approach for enhanced particle swarm optimization and its application to the design of artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 766-770, 2007.
doi:10.1109/TAP.2007.891559

22. Azaro, R., F. De Natale, M. Donelli, and E. Zeni, "Optimized design of a multi-function/multi-band antenna for automotive rescue systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 897-904, Feb. 2006.
doi:10.1109/TAP.2005.863387

23. Azaro, R., M. Donelli, D. Franceschini, E. Zeni, and A. Massa, "Optimized synthesis of a miniaturized SARSAT band pre-fractal antenna," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2205-2207, 2006.
doi:10.1002/mop.21922

24. Fimognari, L., M. Donelli, A. Massa, and R. Azaro, "A planar electronically reconfigurable wi-fi band antenna based on a parasitic microstrip structure," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 623-626, 2007.

25. Azaro, R., F. de Natale, E. Zeni, M. Donelli, and A. Massa, "Synthesis of a pre-fractal dual-band monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, Dec. 2006.
doi:10.1109/LAWP.2006.880695

26. Azaro, R., F. De Natale, E. Zeni, M. Donelli, and A. Massa, "Synthesis of a pre-fractal dual-band monopolar antenna for GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 361-364, Dec. 2006.
doi:10.1109/LAWP.2006.880695

27. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4{3.6 GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 116-119, Dec. 2006.
doi:10.1109/LAWP.2006.872427

28. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303

29. lker, S., "Particle swarm optimization application to microwave circuits," Microwave and Optical Technology Letters, Vol. 50, No. 5, 1333-1336, 2008.
doi:10.1002/mop.23369

30. Ninomiya, H., "A hybrid global/local optimization technique for robust training of microwave neural network models," IEEE Congress on Evolutionary Computation, CEC 2009, Art. No. 4983315, 2956-2962, 2009.

31. Afshinmanesh, F., A. Marandi, and M. Shahabadi, "Design of a single-feed dual-band dual-polarized printed microstrip antenna using a Boolean particle swarm optimization," IEEE Transactions on Antennas and Propagation,, Vol. 56, No. 7, 1845-1852, 2006.
doi:10.1109/TAP.2008.924684

32. Akdagli, A. and K. Guney, "New wide-aperture-dimension formula obtained by using a particle swarm optimization for optimum gain pyramidal horns," Microwave and Optical Technology Letters, Vol. 48, 1201-1205, 2006.
doi:10.1002/mop.21580

33. Mahanfar, A., S. Bila, M. Aubourg, and S. Verdeyme, "Cooperative particle swarm optimization of passive microwave devices," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 21, No. 1-2, 151-168, 2008.
doi:10.1002/jnm.655

34. Hao, W., G. Junping, J. Ronghong, Q. Jizheng, L. Wei, C. Jing, and L. Suna, "An improved comprehensive learning particle swarm optimization and its application to the semiautomatic design of antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3018-3028, 2009.
doi:10.1109/TAP.2009.2028608

35. Goudos, S. K. and J. N. Sahalos, "Microwave absorber optimal design using multi-objective particle swarm optimization," Microwave and Optical Technology Letters, Vol. 48, 1553-1558, 2006.
doi:10.1002/mop.21727

36. Goudos, S. K., Z. D. Zaharis, M. Salazar-Lechuga, P. I. Lazaridis, and P. B. Gallion, "Dielecric filter optimal design suitable for microwave communications by using multiobjective evolutionary algorithms," Microwave and Optical Technology Letters, Vol. 49, No. 10, 2324-2329, 2007.
doi:10.1002/mop.22755

37. Goudos, S. K., Z. D. Zahairs, K. B. Baltzis, C. S. Hilas, and J. N. Sahalos, "A comparative study of particle swarm optimization and differential evolution on radar absorbing materials design or EMC applications," International Symposium on Electromagnetic Compatibility --- EMC Europe, Art. No. 5189697, 2009.

38. Gangopadhyaya, M., P. Mukherjee, and B. Gupta, "Resonant frequency optimization of coaxially fed rectangular microstrip antenna using particle swarm optimization algorithm," Proceedings of the 2010 Annual IEEE India Conference: Green Energy, Comuting and Communication, INDICON, Art. No. 5712677, 2010.

39. Fei, X., T. Xiao-Hong, W. Ling, and W. Tao, "Application of the particle swarm optimization in microwave engineering," IEEE MTT-S International Microwave Workshop Series IMWS on Art of Miniaturizing RF and Microwave Passive Components --- Proceeding , Art. No. 4782296, 187-189, 2008.

40. Dib, N. and M. Khodier, "Design and optimization of multi-band Wilkinson power divider," International Journal of RF and Microwave Computer-aided Engineering, Vol. 18, No. 1, 14-20, 2008.
doi:10.1002/mmce.20261

41. Chauhan, N. C., M. V. Kartikeyan, and A. Mittal, "A modified particle swarm optimizer and its application to the design of microwave filters," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 6, 598-610, 2009.
doi:10.1007/s10762-009-9474-x

42. Ali, F. A. and K. T. Selvan, "A study of PSO and its variants in respect of microstrip antenna feed point optimization," Asia Pacific Microwave Conference, APMC 2009, Art. No. 5384147, 1817-1820, 2009.

43. Chauhan, N. C., M. V. Kartikeyan, and A. Mittal, "A CAD of RF windows using multiobjective particle swarm optimization," IEEE Transactions on Plasma Science, Vol. 37, No. 6, Part 2, 1104-1109, 2009.

44. Fornarelli, G. and L. Mescia, Swarm Intelligence for Electric and Electronic Engineering, CRC-Press, 2012.
doi:10.4018/978-1-4666-2666-9