Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-07
High Definition Electrical Capacitance Tomography for Pipeline Inspection
By
Progress In Electromagnetics Research, Vol. 141, 1-15, 2013
Abstract
Pipelines made of dielectric materials such as Polyethylene (PE) are becoming increasingly popular. With no suitable inspection technique for dielectric pipes, there is an urgent need to develop new technology for their inspection. This paper presents a novel pipe inspection technique using Electrical Capacitance Tomography (ECT) imaging. Traditionally ECT is used for industrial process tomography as a low resolution but fast tomographic imaging technique. Typically commercial ECT can provide a resolution of approximately 10 percent of the imaging region. In this paper a limited region tomography technique is developed take into account prior knowledge about the geometry of the pipe. This has signicantly enhanced the imaging resolution of the ECT system, making it a viable pipe inspection solution. The experimental results in this study demonstrate an interior wall loss area as small as 0.195 percent of the ECT cross sectional imaging region is repeatable and can be reliably detected. A narrowband pass filter method (NPFM) is used as a means to limit the region for the ECT algorithm. This results in an unprecedented resolution, making ECT a viable non-destructive evaluation (NDE) technique for plastic pipes. The NDE application of the ECT for PE pipes is demonstrated in this paper with several experimental results. A wall loss of depth of 1.5 mm could be detected for an ECT sensor array of 150 mm in diameter, showing a high resolution and high definition ECT (HD-ECT) imaging that has not been reported before.
Citation
Marianthe Evangelidis, Lu Ma, and Manuchehr Soleimani, "High Definition Electrical Capacitance Tomography for Pipeline Inspection," Progress In Electromagnetics Research, Vol. 141, 1-15, 2013.
doi:10.2528/PIER13041305
References

1. Munns, I. J. and G. A. Georgiou, "Ultrasonic and radiographic NDT of butt fusion welded polyethylene pipes," Insight, Vol. 41, No. 5, 1999.

2. Sangworasil, M., Y. Kitjaidure, C. Yossontikul, and K. Chitsajul, "An electrical capacitance tomography," Signal Processing 6th International Conference, Vol. 2, 1766-1769, 2002.

3. Liu, S., Q. Chen, X. Xiong, Z. Zhang, and J. Lei, "Preliminary study on ect imaging of flames in porous media," Measurement Science and Technology, Vol. 19, No. 9, 094017, 2008.
doi:10.1088/0957-0233/19/9/094017

4. Yang, W., "Design of electrical capacitance tomography sensors," Measurement Science and Technology, Vol. 21, 13, 2010.

5. Yan, Y., T. Qiu, G. Lu, M. Hossain, G. Gilabert, and S. Liu, "Recent advances in flame tomography," Chinese Journal of Chemical Engineering, Vol. 20, No. 2, 389-399, 2012.
doi:10.1016/S1004-9541(12)60402-9

6. Waterfal, R. C., R. He, P. Wolanski, and Z. Gut, "Flame visualizations using electrical capacitance tomography (ECT)," Proc. SPIE 4188, Process Imaging for Automatic Control, 242-250, 2001.
doi:10.1117/12.417170

7. Fan, L. S., W. Warsito, and B. Du, "Electrical capacitance tomography imaging of gas-solid and gas-liquid-solid fluidized bed systems," Journal of Visualization, Vol. 7, No. 1, 2004.
doi:10.1007/BF03181476

8. Qiang, L. and Z. Yingna, "Review of techniques for the mass flow rate measurement of pneumatically conveyed solids," Measurement, Vol. 44, No. 4, 589-604, 2011.
doi:10.1016/j.measurement.2011.01.013

9. Huang, Z., B. Wang, and H. Li, "Application of electrical capacitance tomography to the void fraction measurement of two-phase flow," IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 1, 7-12, 2003.
doi:10.1109/TIM.2003.809087

10. Soleimani, M., V. Stewart, and C. Budd, "Crack detection in dielectric objects using electrical capacitance tomography imaging," Insight, Non-Destructive Testing and Condition Monitoring, Vol. 53, No. 1, 21-24, 2011.
doi:10.1784/insi.2011.53.1.21

11. Hajihashemi, M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011.

12. Ma, L. and M. Soleimani, "Electromagnetic imaging for internal and external inspection of metallic pipes," Insight, Non-Destructive Testing and Condition Monitoring, Vol. 54, No. 9, 493-495, 2012.
doi:10.1784/insi.2012.54.9.493

13. Ma, L., H. Y. Wei, and M. Soleimani, "Pipeline inspection using magnetic induction tomography based on a narrowband pass filtering method," Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012.
doi:10.2528/PIERM11111109

14. Peng, L., J. Ye, G. Lu, and W. Yang, "Evaluation of effect of number of electrodes in electrical capacitance tomography sensors on image quality," IEEE Sensors Journal, 1554-565, 2011.

15. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

16. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305

17. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

18. Soleimani, M., "Numerical modeling and analysis of the forward and inverse problems in electrical capacitance tomography," International Journal of Information and System Sciences, Vol. 1, No. 1, 193-207, 2005.

19. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

20. Jantan, A. B., R. S. A. Raja Abdullah, R. Mahmood, S. A. AlShehri, S. Khatun, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using NN-based UWB imaging system," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.

21. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405

22. Lei, J., S. Liu, Z. H. Li, and M. Sun, "Image reconstruction algorithm based on the extended regularized total least squares method for electrical capacitance tomography," IET Sci. Meas. Technol., Vol. 2, No. 5, 326-336, 2008.
doi:10.1049/iet-smt:20080029

23. Zhao, J., J. Liu, Z. Li, W. Fu, and X. Li, "Image reconstruction algorithm based on updated sensitivity field for ECT," Computer Engineering and Applications, Vol. 48, No. 4, 2012.

24. Roberts, B. A. and A. C. Kak, "Reflection mode diffraction tomography," Ultrasonic Imaging, Vol. 7, No. 4, 300-320, 1985.
doi:10.1177/016173468500700403

25. Salerno, E., "Microwave tomography of lossy objects from monostatic measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, 986-994, 1999.
doi:10.1109/22.775430

26. Hansen, P. C., "Rank-defficient and discrete ill-posed problems: Numerical aspects of linear inversion," Society for Industria and Applied Mathematics, Vol. 4, 1987.

27. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513

28. Wei, H.-Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress In Electromagnetics Research, Vol. 131, 99-115, 2012.

29. Wei, H.-Y. and M. Soleimani, "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012.

30. Cataldo, A., G. Cannazza, E. De Benedetto, and N. Giaquinto, "Experimental validation of a TDR-based system for measuring leak distances in buried metal pipes," Progress In Electromagnetics Research, Vol. 132, 71-90, 2012.

31. Xing, S., D. Dai, Y. Li, and X. Wang, "Arimetric SAR tomography using L2,1 mixed norm sparse reconstruction method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012.

32. Wang, J., Z. Zhao, J. Song, X. Zhu, Z.-P. Nie, and Q. H. Liu, "Reconstruction of microwave absorption properties in heterogeneous tissue for microwave-induced thermo-acoustic tomography," Progress In Electromagnetics Research, Vol. 130, 225-240, 2012.

33. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

34. Liu, Z., Q. H. Liu, C.-H. Zhu, and J. Yang, "A fast inverse polynomial reconstruction method based on conformal fourier transformation," Progress In Electromagnetics Research, Vol. 122, 119-136, 2012.
doi:10.2528/PIER11092008

35. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101