Vol. 52
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-26
On the Mixed Scattering Mechanism Analysis of Model-Based Decomposition for Polarimetric SAR Data
By
Progress In Electromagnetics Research B, Vol. 52, 327-345, 2013
Abstract
This paper introduces a simple but effective scattering mechanism identification scheme for analyzing mixed scattering mechanisms obtained by model-based decomposition. Using the normalized scattering vector, each pixel is represented by a point in a standard 2-simplex in R3. Seven scattering category centers are represented by the three vertices, the three midpoints of sides and the centroid of the 2-simplex. The scattering category partitioning problem is then solved by minimizing the Euclidean distance between the image pixels and these category centers. The proposed scattering mechanism identification scheme is finally used for data analyzing and unsupervised classification. Experiments on AIRSAR and E-SAR L-band PolSAR images demonstrate the effectiveness of the proposed method.
Citation
Wen Yang, Hui Song, Gui-Song Xia, and Xin Xu, "On the Mixed Scattering Mechanism Analysis of Model-Based Decomposition for Polarimetric SAR Data," Progress In Electromagnetics Research B, Vol. 52, 327-345, 2013.
doi:10.2528/PIERB13040604
References

1. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405

2. Koo, V. C., Y. K. Chan, G. Vetharatnam, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, and M. H. Bin Shah, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

3. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection ," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

4. Van Zyl, J. J., "Unsupervised classification of scattering behavior using radar polarimetry data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, No. 1, 36-45, 1989.
doi:10.1109/36.20273

5. Kong, J., S. Yueh, H. Lim, R. Shin, and J. Van Zyl, "Classification of earth terrain using polarimetric synthetic aperture radar images," Progress In Electromagnetics Research, Vol. 3, 327-370, 1990.

6. Lee, J.-S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex wishart distribution," International Journal of Remote Sensing, Vol. 15, No. 11, 2299-2211, 1994.

7. Pottier, L., "Dual frequency polarimetric SAR data classification and analysis," Progress In Electromagnetics Research, Vol. 31, 247-272, 2001.

8. Ferro-Famil, L., E. Pottier, and J. Lee, "Unsupervised classification of natural scenes from polarimetric interferometric SAR data," Frontiers of Remote Sensing Information Processing, Vol. 105, 2003.

9. Lee, J.-S., M. R. Grunes, E. Pottier, and L. Ferro-Famil, "Unsupervised terrain classification preserving polarimetric scattering characteristics," IEEE Transactions on Geoscience and Remote Sensing , Vol. 42, No. 4, 722-731, 2004.

10. Cao, F., W. Hong, Y. Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the span/h/®/a space and the complex wishart clustering for fully polarimetric SAR data analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 3454-3467, 2007.

11. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multiband multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.

12. Yang, W., Y. Liu, G.-S. Xia, and X. Xu, "Statistical mid-level features for building-up area extraction from full polarimetric SAR imagery," Progress In Electromagnetics Research, Vol. 132, 233-254, 2012.

13. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 68-78, 1997.

14. Lee, J.-S., M. R. Grunes, T. L. Ainsworth, L.-J. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification using polarimetric decomposition and the complex wishart classifier," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2249-2258, 1999.

15. Pottier, E. and J. Lee, "Unsupervised classification scheme of polsar images based on the complex wishart distribution and the H/A/alpha polarimetric decomposition theorem (polarimetric SAR)," EUSAR 2000, 265-268, 2000.

16. Song, H., W. Yang, X. Xu, and M. Liao, "Data-driven polinsar unsupervised classification based on adaptive modebased decomposition and Shannon entropy characterizationl-," Progress In Electromagnetics Research B, Vol. 49, 215-234, 2013.

17. Zakeri, B. G., A. Ghorbani, and H. R. Amindavar, "A new method to extract the polarimetric parameters in imaging radars," Progress In Electromagnetics Research, Vol. 87, 167-182, 2008.

18. Du, Y., W.-Z. Yan, J.-C. Shi, Z. Li, and E.-X. Chen, "Electromagnetic scattering from a corn canopy at L and C bands," Progress In Electromagnetics Research, Vol. 114, 33-49, 2011.

19. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing , Vol. 34, No. 2, 498-518, 1996.

20. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 963-973, 1998.

21..

22. Lee, J.-S. and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, 1st Ed., 422, CRC Press, 2009.

23. Alvarez-Perez, J. L., "Coherence, polarization, and statistical independence in Cloude-Pottier's radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 426-441, 2011.

24. An, W., Y. Cui, and J. Yang, "Three-component model-based decomposition for polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 6, 2732-2739, 2010.

25. Van Zyl, J. J., M. Arii, and Y. Kim, "Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 9, 3452-3459, 2011.

26. Arii, M., J. J. van Zyl, and Y. Kim, "Adaptive model-based decomposition of polarimetric SAR covariance matrices," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 3, 1104-1113, 2011.

27. Cui, Y., Y. Yamaguchi, J. Yang, and H. Kobayashi, "On exact model-based scattering decomposition of polarimetric SAR data," 2012 IEEE International Symposium on Antennas and Propagation (ISAP), 106-109, 2012.

28. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Transactions on Geoscience and Remote Sensing , Vol. 43, No. 8, 1699-1706, 2005.

29. Yamaguchi, Y., A. Sato, W.-M. Boerner, R. Sato, and H. Yamada, "Four-component scattering power decomposition with rotation of coherency matrix ," IEEE Transactions on Geoscience and Remote Sensing , Vol. 49, No. 6, 2251-2258, 2011.

30. Sato, A., Y. Yamaguchi, G. Singh, and S.-E. Park, "Four-component scattering power decomposition with extended volume scattering model," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 2, 166-170, 2012.

31. Zhang, J. J., P. Wang, L. Chen, Y. Li, Q. Yin, and W. Hong, "Seven-category model-based segmentation for polarimetric SAR data," PolInSAR'13, Jan. 2013.

32. Arii, M., J. J. van Zyl, and Y. Kim, "A general characterization for polarimetric scattering from vegetation canopies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 9, 3349-3357, 2010.