Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-19
On-Road Magnetic Emissions Prediction of Electric Cars in Terms of Driving Dynamics Using Neural Networks
By
Progress In Electromagnetics Research, Vol. 139, 671-687, 2013
Abstract
This paper presents a novel artificial neural network (ANN) model estimating vehicle-level radiated magnetic emissions of an electric car as a function of the corresponding driving pattern. Real world electromagnetic interference (EMI) experiments have been realized in a semi-anechoic chamber using Renault Twizy. Time-domain electromagnetic interference (TDEMI) measurement techniques have been employed to record the radiated disturbances in the 150 kHz-30 MHz range. Interesting emissions have been found in the range 150 kHz-3.8 MHz approximately. The instantaneous vehicle speed and acceleration have been chosen to represent the vehicle operational modes. A comparative study of the prediction performance between different static and dynamic neural networks has been done. Results showed that a Multilayer Perceptron (MLP) model trained with extreme learning machines (ELM) has achieved the best prediction results. The proposed model has been used to estimate the radiated magnetic field levels of an urban trip carried out with a Think City electric car.
Citation
Ahmed Wefky, Felipe Espinosa, Frank Leferink, Alfredo Gardel, and Robert Vogt-Ardatjew, "On-Road Magnetic Emissions Prediction of Electric Cars in Terms of Driving Dynamics Using Neural Networks," Progress In Electromagnetics Research, Vol. 139, 671-687, 2013.
doi:10.2528/PIER13040405
References

1. Hansen, J. Q., M. Winther, and S. C. Sorenson, "The influence of driving patterns on petrol passenger car emissions," Science of the Total Environment, Vol. 169, No. 1-3, 129-139, 1995.
doi:10.1016/0048-9697(95)04641-D

2. Joumard, R., et al., "Hot passenger car emissions modelling as a function of instantaneous speed and acceleration," Science of the Total Environment, Vol. 169, No. 1-3, 167-174, 1995.
doi:10.1016/0048-9697(95)04645-H

3. Sjodin, A. and M. Lenner, "On-road measurements of single vehicle pollutant emissions, speed and acceleration for large fleets of vehicles in different tra±c environments," Science of the Total Environment, Vol. 169, No. 1-3, 157-165, 1995.
doi:10.1016/0048-9697(95)04644-G

4. Barth, M., et al., "Analysis of modal emissions from diverse in-use vehicle fleet," Transportation Research Record: Journal of the Transportation Research Board, Vol. 1587, 73-84, 1997.
doi:10.3141/1587-09

5. Nesamani, K. S. and K. P. Subramanian, "Impact of real-world driving characteristics on vehicular emissions," JSME International Journal Series B: Fluids and Thermal Engineering, Vol. 49, No. 1, 19-26, 2006.
doi:10.1299/jsmeb.49.19

6. Washington, S., J. Wolf, and R. Guensler, "Binary recursive partitioning method for modeling hot-stabilized emissions from motor vehicles," Transportation Research Record: Journal of the Transportation Research Board, Vol. 1587, 96-105, 1997.
doi:10.3141/1587-11

7. Barth, M. J., et al., "Development of a comprehensive modal emissions model,", Monograph Record, 2000.

8. Sorenson, S. C., et al., "Individual and public transportation - Emissions and energy consumption models,", Lyngby, 1992.

9. Holmen, B. A. and D. A. Niemeier, "Characterizing the effects of driver variability on real-world vehicle emissions," Transportation Research Part D: Transport and Environment, Vol. 3, No. 2, 117-128, 1998.
doi:10.1016/S1361-9209(97)00032-1

10. Tong, H., W. Hung, and C. Cheung, "On-road motor vehicle emissions and fuel consumption in urban driving conditions," Journal of the Air & Waste Management Association, Vol. 50, No. 4, 543-554, 2000.
doi:10.1080/10473289.2000.10464041

11. Espinosa, F., et al., "Design and implementation of a portable electronic system for vehicle-driver-route activity measurement," Measurement, Vol. 44, No. 2, 326-337, 2011.
doi:10.1016/j.measurement.2010.10.006

12. Silva, F. and M. Aragon, "Electromagnetic interferences from electric/hybrid vehicles," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, 2011.

13. Ruddle, A. R., D. A. Topham, and D. D. Ward, "Investigation of electromagnetic emissions measurements practices for alternative powertrain road vehicles," 2003 IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 543-547, 2003.
doi:10.1109/ISEMC.2003.1236660

14. Agency, N. S., Allied Environmental Conditions and Tests Publication, AECTP 500, 4th edition, January 2011.

15. Ptitsyna, N. and A. Ponzetto, "Magnetic fields encountered in electric transport: Rail systems, trolleybus and cars," 2012 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 1-5, 2012.
doi:10.1109/EMCEurope.2012.6396902

16. Halgamuge, M. N., C. D. Abeyrathne, and P. Mendis, "Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars," Radiation Protection Dosimetry, Vol. 141, No. 3, 255-268, 2010.
doi:10.1093/rpd/ncq168

17. Wefky, A., et al., "Electrical drive radiated emissions estimation in terms of input control using extreme learning machines," Mathematical Problems in Engineering, Vol. 2012, 11, 2012.

18. Wefky, A. M., et al., "Modeling radiated electromagnetic emissions of electric motorcycles in terms of driving profile using mlp neural networks," Progress In Electromagnetics Research, Vol. 135, 231-244, 2013.

19. Miyajima, C., et al., "Cepstral analysis of driving behavioral signals for driver identification," 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, 2006.

20. Wefky, A. M., et al., "Alternative sensor system and MLP neural network for vehicle pedal activity estimation," Sensors, Vol. 10, No. 4, 3798-3814, 2010.
doi:10.3390/s100403798

21. Wefky, A., et al., "Comparison of neural classifiers for vehicles gear estimation," Applied Soft Computing, Vol. 11, No. 4, 3580-3599, 2011.
doi:10.1016/j.asoc.2011.01.030

22. Ahn, K., et al., "Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels," Journal of Transportation Engineering, Vol. 128, No. 2, 182-190, 2002.
doi:10.1061/(ASCE)0733-947X(2002)128:2(182)

23. Dong, X., et al., "Detection and identification of vehicles based on ," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 4, 752-759, 2006.
doi:10.1109/TEMC.2006.882841

24. Tsai, C. Y., E. J. Rothwell, and K. M. Chen, "Target discrimination using neural networks with time domain or spectrum magnitude response," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 3, 341-382, 1996.
doi:10.1163/156939396X00450

25. Atkins, R. G., R. T. Shin, and J. A. Kong, "A neural network method for high range resolution target classification," Progress In Electromagnetics Research, Vol. 4, 255-292, 1991.

26. Koroglu, S., et al., "An approach to the calculation of multilayer magnetic shielding using artificial neural network," Simulation Modelling Practice and Theory, Vol. 17, No. 7, 1267-1275, 2009.
doi:10.1016/j.simpat.2009.05.001

27. Aunchaleevarapan, K., K. Paithoonwatanakij, W. Khan-Ngern, and S. Nitta, "Novel method for predicting PCB configurations for near field and far field radiated EMI using a neural network," IEICE Trans. Commun., Vol. E86-B, No. 4, 1364-1376, 2003.

28. Chahine, I., et al., "Characterization and modeling of the suscep-tibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 2, 285-293, 2008.
doi:10.1109/TEMC.2008.918983

29. Sujintanarat, P., P. Dangkham, S. Chaichana, K. Aunchaleevarapan, and P. Teekaput, "Recognition and identification of radiated EMI for shielding aperture using neural network," PIERS Online, Vol. 3, No. 4, 444-447, 2007.
doi:10.2529/PIERS060907082540

30. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.

31. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Comparative study of neural network training applied to adaptive beamforming of antenna arrays," Progress In Electromagnetics Research, Vol. 126, 269-283, 2012.
doi:10.2528/PIER12012408

32. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806

33. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

34. Al Salameh, M. S. and E. T. Al Zuraiqi, "Solutions to lectromagnetic compatibility problems using artificial neural networks representation of vector finite element method," IET Microwaves, Antennas & Propagation, Vol. 2, No. 4, 348-357, 2008.
doi:10.1049/iet-map:20060189

35. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetic Research, Vol. 26, 69-90, 2000.

36. Khare, M. and S. M. S. Nagendra, Artificial Neural Networks in Vehicular Pollution Modelling, Springer, 2007.

37. Winter, W. and M. Herbrig, "Time domain measurements a novel method for qualification of electronics," 2010 15th International Conference on Microwave Techniques (COMITE), 19-24, 2010.
doi:10.1109/COMITE.2010.5481261

38. Winter, W. and M. Herbrig, "Time domain measurements in automotive applications," 2009 IEEE International Symposium on Electromagnetic Compatibility, 109-115, 2009.
doi:10.1109/ISEMC.2009.5284604

39. Karabetsos, E., et al., "EMF measurements in hybrid technology cars," Proceedings of 6th International Workshop on Biological Effects of Electromagnetic Fields, Istambul, 2010.

40. Concha Moreno-Torres, P., et al., "Evaluation of the magnetic field generated by the inverter of an electric vehicle," IEEE Transactions on Magnetics, Vol. 49, No. 2, 837-844, 2013.
doi:10.1109/TMAG.2012.2214787

41. Berisha, S., et al., "Magnetic field generated from different electric vehicles,", SAE Technical Paper 951934, 1995.

42. Ptitsyna, N., et al., "Analysis of magnetic fields onboard electric transport systems in regard to human exposure," 2012 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 1-5, 2012.
doi:10.1109/EMCEurope.2012.6396902

43. Kopytenko, Y. A., et al., "Monitoring and analysis of magnetic fields onboard transport systems: Waveforms and exposure Assessment," 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, 331-333, 2007.
doi:10.1109/EMCECO.2007.4371725

44. Zegeye, S., et al., "Model-based traffic control for the reduction of fuel consumption, emissions, and travel time," 12th IFAC Symposium on Control in Transportation Systems, 149-154, 2009.

45. Hagan, M. T. and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, 989-993, 1994.
doi:10.1109/72.329697

46. Moler, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, No. 4, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5

47. Battiti, R., "First-and second-order methods for learning: Between steepest descent and Newton's method," Neural Computation, Vol. 4, No. 2, 141-166, 1992.
doi:10.1162/neco.1992.4.2.141

48. Setiono, R. and L. C. K. Hui, "Use of a quasi-Newton method in a feedforward neural network construction algorithm," IEEE Transactions on Neural Networks, Vol. 6, No. 1, 273-277, 1995.
doi:10.1109/72.363426

49. Huang, G.-B., D.Wang, and Y. Lan, "Extreme learning machines: A survey," International Journal of Machine Learning and ybernetics, Vol. 2, No. 2, 107-122, 2011.
doi:10.1007/s13042-011-0019-y

50. Huang, G.-B., L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Transactions on Neural Networks, Vol. 17, No. 4, 879-892, 2006.
doi:10.1109/TNN.2006.875977

51. Haykin, S. S., Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.

52. Hagan, M. T., H. B. Demuth, and M. H. Beale, Neural Network Design, PWS Pub., 1996.

53. Demuth, H. and M. Beale, "Neural network toolbox: For use with MATLAB ®,", Mathworks, 2001.