Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-26
A New EFIE Method Based on Coulomb Gauge for the Low-Frequency Electromagnetic Analysis
By
Progress In Electromagnetics Research, Vol. 140, 613-631, 2013
Abstract
To solve the low-frequency breakdown inherent from the electric field integral equation (EFIE), an alternative new form of the EFIE is proposed by using the Coulomb-gauge Green's function of quasi-static approximation. Different from the commonly adopted Lorentz-gauge EFIE, the Coulomb-gauge EFIE separates the solenoidal and irrotational surface currents explicitly, which captures inductive and capacitive responses through electrodynamic and electrostatic Green's functions, respectively. By applying existing techniques such as the loop-tree decomposition, frequency normalization, and basis rearrangement, the Coulomb-gauge EFIE also can remedy the low-frequency breakdown problem. Through comparative studies between the Lorentz-gauge and Coulomb-gauge EFIE approaches from mathematical, physical and numerical aspects, the Coulomb-gauge EFIE approach shows the capability of solving low-frequency problems and achieves almost the same accuracy and computational costs compared to the Lorentz-gauge counterpart.
Citation
Xiaoyan Y. Z. Xiong, Li Jun Jiang, Wei E. I. Sha, and Yat-Hei Lo, "A New EFIE Method Based on Coulomb Gauge for the Low-Frequency Electromagnetic Analysis," Progress In Electromagnetics Research, Vol. 140, 613-631, 2013.
doi:10.2528/PIER13040303
References

1. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, London, UK, 2009.
doi:10.2200/S00102ED1V01Y200807CEM012

2. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comparison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110

3. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

4. Wilton, D. R., J. S. Lin, and S. M. Rao, "A novel technique to calculate the electromagnetic scattering by surfaces of arbitrary shape," URSI Radio Science Meeting Dig., 24, Los Angeles, CA, Jun. 1981.

5. Eibert, T. F., "Iterative-solver convergence for loop-star and loop-tree decompositions in method-of-moments solutions of the electric-field integral equation," IEEE Antennas Propag. Mag., Vol. 46, 80-85, Jun. 2004.
doi:10.1109/MAP.2004.1374101

6. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propag., Vol. 47, 339-346, Feb. 1999.
doi:10.1109/8.761074

7. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, 1635-1645, Oct. 2000.
doi:10.1109/8.899680

8. Yeom, J.-H., H. Chin, H.-T. Kim, and K.-T. Kim, "Block matrix preconditioner method for the electric field integral equation (EFIE) formulation based on loop-star basis functions," Progress In Electromagnetics Research, Vol. 134, 543-558, 2013.

9. Lee, J. F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Trans. Antennas Propag., Vol. 51, 1855-1863, Aug. 2003.
doi:10.1109/TAP.2003.814736

10. Christiansen, S. H. and J. C. Nedelec, "A preconditioner for the electric field integral equation based on Calderón formulas," SIAM J. Numer. Anal., Vol. 40, 1100-1135, Sep. 2002.
doi:10.1137/S0036142901388731

11. Yan, S., J. M. Jin, and Z. Nie, "EFIE analysis of low-frequency problems with loop-star decomposition and Calderón multiplicative preconditioner," IEEE Trans. Antennas Propag., Vol. 58, 857-867, Mar. 2010.
doi:10.1109/TAP.2009.2039336

12. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderón preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, Aug. 2008.
doi:10.1109/TAP.2008.926788

13. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5

14. Valdes, F., F. P. Andriulli, K. Cools, and E. Michielssen, "High-order div- and quasi curl-conforming basis functions for Calderón multiplicative preconditioning of the EFIE," IEEE Trans. Antennas Propag., Vol. 59, 1321-1337, Apr. 2011.
doi:10.1109/TAP.2011.2109692

15. Andriulli, F. P., A. Tabacco, and G. Vecchi, "Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns," IEEE Trans. Antennas Propag., Vol. 58, 1614-1624, May 2010.
doi:10.1109/TAP.2010.2044325

16. Qian, Z. G. and W. C. Chew, "An augmented electric field integral equation for high-speed interconnect analysis," Microw. Opt. Technol. Lett., Vol. 50, 2658-2662, Oct. 2008.
doi:10.1002/mop.23736

17. Qian, Z. G. and W. C. Chew, "Enhanced A-EFIE with perturbation method," IEEE Trans. Antennas Propag., Vol. 58, 3256-3264, Oct. 2010.
doi:10.1109/TAP.2010.2055795

18. Chen, Y. P., L. J. Jiang, Z. G. Qian, and W. C. Chew, "An augmented electric field integral equation for layered medium Green's function," IEEE Trans. Antennas Propag., Vol. 59, 960-968, Mar. 2011.
doi:10.1109/TAP.2010.2103042

19. Yan, S., J. M. Jin, and Z. P. Nie, "Analysis of electrically large problems using the augmented EFIE with a Calderón preconditioner," IEEE Trans. Antennas Propag., Vol. 59, 2303-2314, Jun. 2011.
doi:10.1109/TAP.2011.2143672

20. Pan, Y. C. and W. C. Chew, "A fast multipole method for embedded structure in a stratified medium," Progress In Electromagnetics Research, Vol. 44, 1-38, 2004.
doi:10.2528/PIER03050602

21. Ergul, O. and L. Gurel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104

22. Bogaert, I., J. Peeters, and D. De Zutter, "Error control of the vectorial nondirective stable plane wave multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 111, 271-290, 2011.
doi:10.2528/PIER10090604

23. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203

24. Wang, W. and N. Nishimura, "Calculation of shape derivatives with periodic fast multipole method with application to shape optimization of metamaterials," Progress In Electromagnetic Research, Vol. 127, 46-64, 2012.

25. Gope, D., A. Ruehli, and V. Jandhyala, "Solving low-frequency EM-CKT problems using the PEEC method," IEEE Transactions on Advanced Packaging, Vol. 30, No. 2, May 2007.
doi:10.1109/TADVP.2007.896000

26. Jiang, L. J. and A. Ruehli, "On the frequency barrier of surface integral equations from a circuit point of view," Progress In Electromagnetics Research Symposium Abstracts, 46, Cambridge, USA, Jul. 5-8, 2010.

27. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011.

28. Song, Z., F. Dai, D. Su, S. Xie, and F. Duval, "Reduced PEEC modeling of wire-ground structures using a selective mesh approach," Progress In Electromagnetics Research, Vol. 123, 355-370, 2012.
doi:10.2528/PIER11112109

29. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley India Pvt Ltd., 2007.

30. Nevels, R. D. and K. J. Crowell, "A Coulomb gauge analysis of a wire scatterer," IEE Proc., Pt. H, Vol. 137, 384-388, Dec. 1990.

31. Bladel, J., Electromagnetic Field, 3rd Ed., Wiley-Interscience, 2007.

32. Chew, W. C., E. Michielssen, J. M. Song, and J. M. Jin, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Inc., Norwood, MA, 2001.

33. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, 856-869, Jul. 1986.

34. Chu, Y. H. and W. C. Chew, "Large-scale computation for electrically small structures using surface-integral equation method," Microw. Opt. Technol. Lett., Vol. 47, No. 6, 525-530, Dec. 20, 2005.
doi:10.1002/mop.21219

35. http://www.ansys.com/Products/Simulation.