Vol. 140
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-29
The Improvement of Array Antenna Performance with the Implementation of an Artificial Magnetic Conductor (AMC) Ground Plane and in-Phase Superstrate
By
Progress In Electromagnetics Research, Vol. 140, 147-167, 2013
Abstract
This paper discusses performance improvement with the integration of an artificial magnetic conductor (AMC) into array antennas. An AMC with defected ground structure (DGS) was designed to construct the AMC ground plane and in-phase superstrate. The two distinguishable structures were integrated into an array antenna, which serves as a reference antenna at 5.8 GHz. The impedance bandwidth (BW) of the reference antenna significantly improved to 287% when integrated with an AMC ground plane and with 37% reduced size. On the other hand, the integration of in-phase superstrate effectively enhances the gain and BW of the reference antenna by 1 dBi and 44%, respectively. The effects of air gaps on the reference antenna with both the AMC ground plane and in-phase superstrate are discussed. The antenna performance factors, such as return loss and radiation pattern, are also discussed for the reference antenna, the reference antenna with the AMC ground plane, and the reference antenna with in-phase superstrate, respectively. There is satisfactorily good agreement between the simulation and measurement results. The proposed antenna is useful in WLAN (5.15-5.35 GHz and 5.725-5.825 GHz) and WiMAX (5.725-5.825 GHz) applications.
Citation
Raimi Dewan, Sharul Kamal Bin Abd Rahim, Siti Fatimah Ausordin, and Teddy Purnamirza, "The Improvement of Array Antenna Performance with the Implementation of an Artificial Magnetic Conductor (AMC) Ground Plane and in-Phase Superstrate," Progress In Electromagnetics Research, Vol. 140, 147-167, 2013.
doi:10.2528/PIER13040206
References

1. Chen, X., J. Chen, C. Liu, and K. Huang, "A genetic metamaterial and its application to gain improvement of a patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1977-1985, 2012.
doi:10.1080/09205071.2012.723674

2. Deng, J. Y., L. X. Guo, and J. H. Yang, "Narrow band notches for ultra-wideband antenna using electromagnetic band-gap structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2320-2327, 2011.
doi:10.1163/156939311798806211

3. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

4. Zhang, F., V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, "Coupling effect for dielectric metamaterial dimer," Progress In Electromagnetics Research, Vol. 132, 587-601, 2012.

5. Yan, S. and G. A. E. Vandenbosch, "Increasing the NRI bandwidth of dielectric sphere-based metamaterials by coating," Progress In Electromagnetics Research, Vol. 132, 1-23, 2012.

6. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269

7. Costa, F. and A. Monorchio, "Multiband electromagnetic wave absorber based on reactive impedance ground planes," IET Microwaves, Antennas & Propagation, Vol. 4, 1720-1727, 2010.
doi:10.1049/iet-map.2009.0359

8. Li, L., S. Lei, and C. H. Liang, "Ultra-low profile high-gain Fabry-Perot resonant antennas with fishnet superstrate," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-6, 806-816, 2012.
doi:10.1080/09205071.2012.710809

9. Li, Y. and K. P. Esselle, "Small EBG resonator high-gain antenna using in-phase highly-reflecting surface," Electronics Letters, Vol. 45, 1058-1060, 2009.
doi:10.1049/el.2009.0959

10. Guo, W., L. He, B. Li, T. Teng, and X. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2012.

11. Segovia-Vargas, D., F. J. Herraiz-Martínez, E. Ugarte-Muñz, L. E. García-Muñoz, and V. González-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Elec- tromagnetics Research, Vol. 133, 91-115, 2012.

12. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.

13. Tiang, J. J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.

14. Foroozesh, A. and L. Shafai, "Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement," Canadian Journal of Electrical and Computer Engineering, Vol. 33, 87-98, 2008.
doi:10.1109/CJECE.2008.4621833

15. Dewan, R., S. K. A. Rahim, S. F. Ausordin, H. U. Iddi, and M. Z. Z. A. Aziz, "X-polarization array antenna with parallel feeding for WiMAX 3.55 GHz application," IEEE International RF and Microwave Conference, 368-372, 2011.

16. Kordalivand, A. M. and T. A. Rahman, "Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013.

17. Mohamadi Monavar, F. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

18. Gujral, M., J. L. W. Li, T. Yuan, and C. W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

19. Gebril, K. K., S. K. A. Rahim, and A. Y. Abdulrahman, "Bandwidth enhancement and miniaturization of dielectric resonator an- tenna for 5.8 GHz WLAN," Progress In Electromagnetics Research C, Vol. 19, 179-189, 2011.

20. Jeong, G.-T., W.-S. Kim, and K.-S. Kwak, "Dual-band Wi-Fi antenna with a ground stub for bandwidth enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1036-1039, 2012.
doi:10.1109/LAWP.2012.2214755

21. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 128, 101-120, 2012.
doi:10.2528/PIER11112101

22. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 5, 711-717, 2011.
doi:10.1049/iet-map.2010.0200

23. De Cos, M. E., Y. Ávarez, R. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505

24. De Cos, M. E., Y. Ávarez, and F. Las-Heras, "Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC," Microwave and Optical Technology Letters, Vol. 53, 1372-1377, 2011.
doi:10.1002/mop.25974