1. Jobsis, F. F., et al. "Non invasive, infrared monitoring of cerebral and myocardial oxygen su±ciency and circulatory parameters," Science, Vol. 198, No. 4323, 1264-1267, 1977.
doi:10.1126/science.929199
2. Okada, E., et al. "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Applied Optics, Vol. 36, No. 1, 21-31, 1997.
doi:10.1364/AO.36.000021
3. Boas, D. A., J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Exp., Vol. 10, No. 3, 159-170, 2002.
doi:10.1364/OE.10.000159
4. Fukui, Y., Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Applied Optics, Vol. 42, No. 16, 2881-2887, 2003.
doi:10.1364/AO.42.002881
5. Villringer, A. and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci, Vol. 20, No. 10, 435-442, 1997.
doi:10.1016/S0166-2236(97)01132-6
6. Deply, D. T., M. Cope, et al. "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol., Vol. 33, 1433-1422, 1988.
7. Bashkatov, A. N., E. A. Genina, et al. "Optical properties of human cranial bone in the spectral range from 800 to 2000 nm," Proc. of SPIE, Vol. 6163, No. 616310, 1-11, 2005..
8. Yaroslavsky, A. N., P. C. Schulze, and I. V. Yaroslavsky, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol., Vol. 47, 2059-2073, 2002.
doi:10.1088/0031-9155/47/12/305
9. Custo, A., W. M. Wells III, and A. H. Barnett, "Effective scattering coefficient of the cerebral spinal °uid in adult head models for diffuse optical imaging," Applied Optics, Vol. 45, No. 19, 4747-4755, 2008.
doi:10.1364/AO.45.004747
10. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin, "Optical clearing of cranial bone," Advanced in Optical Technologies, Vol. 2008, No. 10, 2008.
11. Wilson, B. C. and G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue," Med. Phys., Vol. 10, No. 6, 824-830, 1983.
doi:10.1118/1.595361
12. Wang, L., S. Jaques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Meth. Prog. Biol., Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F
13. Dai, Y., W. Liu, and X. B. Xu, "A monte carlo mpsted analysis of scattering from cylinders buried below a random periodic rough surface," Progress In Electromagnetics Research B, Vol. 47, 179-202, 2013.
14. Paez, E., M. A. Azpurua, C. Tremola, and R. C. Callarotti, "Uncertainty estimation in complex permittivity measurements by shielded dielectric resonator technique using the monte carlo method," Progress In Electromagnetics Research B, Vol. 41, 101-119, 2012.
15. Gargama, H., S. K. Chaturvedi, and A. K. Thakur, "On the Design and reliability analysis of electromagnetic absorbes using real-coded genetic algorithm and monte carlo simulation ," Progress In Electromagnetics Research B, Vol. 43, 169-187, 2012.
16. Hiraoka, M., M. Firbank, and M. Essenpreis, "A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol., Vol. 38, 1859-1876, 1993.
doi:10.1088/0031-9155/38/12/011
17. Fang, Q. and D. A. Boas, "Monte Carlo simulation of photon migration in 3Dturbid media accelerated by graphics processing units," Opt. Exp., Vol. 17, No. 22, 20178-20190, 2009.
doi:10.1364/OE.17.020178
18. Okada, E., M. Firbank, and D. T. Deply, "The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy," Phys. Med. Biol., Vol. 40, 2093-2108, 1995.
doi:10.1088/0031-9155/40/12/007
19. Mcgreevy, R. L. and L. Pusztai, "Reverse Monte Carlo simulation: A new technique for the determination of disordered structures," Molecular Simulation, Vol. 1, 359-367, 1988.
doi:10.1080/08927028808080958
20. Aslin, R. N. and J. Mehler, "Near-infrared spectroscopy for functional studies of brain activity in human infants: Promise, prospects, and challenges," Journal of Biomedical Optics, Vol. 10, No. 1, 011009, 2005.
doi:10.1117/1.1854672
21. Hadfield, R. H., "Single-photon detectors for optical quantum information applications," Nature Phtonics, Vol. 3, 696-705, 2009.
doi:10.1038/nphoton.2009.230
22. Schmidt, F. E., Development of a time-resolved optical tomography system for neonatal brain imaging, Ph.D. thesis, 163-64, University of London, 1999.
23. Song, Y. W., S. Y. Set, and S. Yamashita, "1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes," IEEE Photonics Technology Letters, Vol. 17, No. 8, 1623-1625, 2005.
doi:10.1109/LPT.2005.850883
24. Horton, N. G., K. Wang, and C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, 205-209, 2013.
doi:10.1038/nphoton.2012.336