Vol. 40
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-01
Compact Coplanar Waveguide (CPW)-Fed Tunable Wideband Resonant Antennas Using Metamaterial Transmission Line
By
Progress In Electromagnetics Research Letters, Vol. 40, 19-28, 2013
Abstract
A wideband resonant antenna loaded with coplanar waveguide (CPW) epsilon negative transmission metamaterial line (ENG MTL) unit cells is proposed. The CPW geometry provides high design freedom, and the metamaterial resonant antenna is designed on a CPW single layer where vias are not required. The novel ENG unit cell on a vialess single layer simplifies the fabrication process. The dispersion analysis of the metamaterial unit cell reveals that increasing right hand capacitance and left hand inductance can decrease the half-wavelength resonance frequency, thus reducing the electrical size of the proposed antenna. Based on the proposed ENG MTL unit cell the wideband antenna is verified by a commercial EM simulator HFSS11 and developed. Comparing the measured performances with those resonant antennas, it is noticed that the proposed antenna achieves high bandwidth and further size reduction, higher efficiency and easier manufacturing. The realized antenna has a compact size of 0.32λ0 × 0.20λ0 × 0.012λ0 (26.6 mm × 16.8 mm × 1 mm) at 3.65 GHz, and operates over the frequency ranges 3.38-4.23 GHz suitable for WiMAX applications. Good agreement between the simulated and measured results is obtained.
Citation
Long Zheng, Guangming Wang, and Lin Geng, "Compact Coplanar Waveguide (CPW)-Fed Tunable Wideband Resonant Antennas Using Metamaterial Transmission Line," Progress In Electromagnetics Research Letters, Vol. 40, 19-28, 2013.
doi:10.2528/PIERL13032512
References

1. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications," Wiley, Dec. 2005.

2. Lee, C.-J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2283-2291, 2006.
doi:10.1109/TAP.2006.879199

3. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopole radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-876, Mar. 2007.
doi:10.1109/TAP.2007.891845

4. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, Dec. 2007.
doi:10.1109/TAP.2007.910505

5. Ryu, Y.-H., J.-H. Park, J.-H. Lee, and H.-S. Tae, "Multiband antenna using +1, -1, and 0 resonant mode of DGS dual composite right/left handed transmission line," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2485-2488, Oct. 2009.
doi:10.1002/mop.24649

6. Jang, T., A. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended band-width and high efficiency on vialess single layer," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 363-372, Feb. 2011.
doi:10.1109/TAP.2010.2096191

7. Lai, C.-P., S.-C. Chiu, H.-J. Li, and S.-Y. Chen, "Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3448-3453, Sep. 2011.
doi:10.1109/TAP.2011.2161561

8. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
doi:10.1109/TAP.2011.2163754

9. Leftheriades, G. V. E., A. K. Iyer, and P. C. K. Remer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

10. Lim, S., C. Caloz, and T. Itoh, "Metmaterial-based electronically controlled transmission line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, 161-173, Jan. 2005.
doi:10.1109/TMTT.2005.856086

11. Palandoken, M., A. Grede, and H. Henke, "Broadband microtrip antenna with left handed metamaterial," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 331-338, Feb. 2009.
doi:10.1109/TAP.2008.2011230

12. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

13. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybird mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1143-1147, Feb. 2012.
doi:10.1109/TAP.2011.2173114

14. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
doi:10.1109/TAP.2011.2163754