Vol. 40
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-30
Compact Reconfigurable HMSIW Bandpass Filter Loaded by CSRR
By
Progress In Electromagnetics Research Letters, Vol. 40, 191-200, 2013
Abstract
A reconfigurable half-mode substrate integrated waveguide (HMSIW) bandpass filter (BPF) loaded by complementary split-ring resonator (CSRR) is investigated. The proposed HMSIW-CSRR structure allows the implementation of a forward-wave passband propagating below the characteristic cutoff frequency of the waveguide. By changing the effective capacitance to ground of the CSRR, frequency tuning of the resonator is observed without other external circuit. The proposed filter exhibits improved selectivity due to the employment of the pseudo-S defected structure to generate transmission zero at the low stopband. To verify the presented design method, the predicted compact reconfigurable filter, tuned between 3.6 GHz and 4.5 GHz with insertion loss less than 3.6 dB and return loss better than 17 dB, is fabricated based on the standard printed circuit board process. The measured results are in good agreement with the simulation.
Citation
Zhudan Wang, Feng Wei, Li Zhang, and Xiao-Wei Shi, "Compact Reconfigurable HMSIW Bandpass Filter Loaded by CSRR," Progress In Electromagnetics Research Letters, Vol. 40, 191-200, 2013.
doi:10.2528/PIERL13032115
References

1. Shen, W., W.-Y. Yin, and X.-W. Sun, "Compact substrate integrated waveguide (SIW) filter with defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 21, 83-85, 2011.
doi:10.1109/LMWC.2011.2158412

2. Li, D., C. Tong, J. Bao, P. Peng, and D. Yu, "A novel bandpass filter of substrate integrated waveguide (SIW) based on S-shaped EBG," Progress In Electromagnetics Research Letters, Vol. 36, 191-200, 2013.

3. Hao, Z. C., W. Hong, J. X. Chen, X. P. Chen, and K. Wu, "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2968-2977, Sep. 2005.
doi:10.1109/TMTT.2005.854232

4. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and H. J. Tang, "Novel substrate integrated waveguide cavity filter with defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, 1280-1286, 2005.
doi:10.1109/TMTT.2005.845750

5. Wei, Q.-F., Z.-F. Li, L.-S. Wu, and L. Li, "A novel multilayered cross-coupled substrate-integrated waveguide (SIW) circular cavity filter in LTCC," Microwave and Optical Technology Letters, Vol. 51, 1686-1689, 2009.
doi:10.1002/mop.24435

6. Zhang, Q., B. Wang, W. Yin, and L. Wu, "Design of a miniaturized dual-band double-folded substrate integrated waveguide bandpass filter with controllable band-widths," Progress In Electromagnetics Research, Vol. 136, 211-223, 2013.

7. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.

8. Sekar, V. and K. Entesari, "A novel compact dual-band half-mode substrate integrated waveguide bandpass filter," 2011 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-4, Piscataway, NJ, USA, Jun. 5-10, 2011.

9. Wang, Y., W. Hong, Y. Dong, B. Liu, H. J. Tang, J. Chen, X. Yin, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 17, 265-267, 2007.
doi:10.1109/LMWC.2007.892958

10. Senior, D. E., X. Cheng, and Y.-K. Yoon, "Electrically tunable evanescent mode half-mode substrate-integrated-waveguide resonators," IEEE Microwave and Wireless Components Letters, Vol. 22, 123-125, 2012.
doi:10.1109/LMWC.2012.2183860

11. Domg, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

12. Senior, D. E., X. Chen, M. Machado, and Y.-K. Yoon, "Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.
doi:10.1109/APS.2010.5561779

13. Jarauta, E., F. Falcone, M. Beruete, and J. Illescas, "Duplexers and multiplexers based on microstrip line loaded with complementary split ring resonators," Progress In Electromagnetics Research Letters, Vol. 27, 9-16, 2011.
doi:10.2528/PIERL11080107

14. Li, T. P., G. M. Wang, K. Lu, H. X. Xu, Z. H. Liao, and B. F. Zong, "Novel bandpass filter based on CSRR using Koch fractal curve," Progress In Electromagnetics Research Letters, Vol. 28, 121-128, 2012.
doi:10.2528/PIERL11082903

15. Al-Naib, I. A. I. and M. Koch, "Coplanar waveguides incorporating SRRS or CSRRS," Progress In Electromagnetics Research B, Vol. 23, 343-355, 2010.
doi:10.2528/PIERB10061602

16. Khan, S. N., X. G. Liu, L. X. Shao, and Y. Wang, "Complementary split ring resonators of large stop bandwidth," Progress In Electromagnetics Research Letters, Vol. 14, 127-132, 2010.
doi:10.2528/PIERL10033105

17. Jiang, W., W. Shen, L. Zhou, and W. Y. Yin, "Miniaturized and high-selectivity substrate integrated waveguide (SIW) bandpass filter loaded by complementary split-ring resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, 2012.
doi:10.1080/09205071.2012.702203

18. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

19. Karthikeyan, S. S. and R. S. Kshetrimayum, "Harmonic suppression of parallel coupled microstrip line bandpass filter using CSRR," Progress In Electromagnetics Research Letters, Vol. 7, 193-201, 2009.
doi:10.2528/PIERL08122602

20. Wu, G. L., W. Mu, X. W. Dai, and Y. C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

21. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

22. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2012.

23. Xu, Z., Y. Shi, C. Xu, and P.Wang, "A novel dual mode substrate integrated waveguide filter with mixed source-load coupling (MSLC)," Progress In Electromagnetics Research, Vol. 136, 595-606, 2013.

2. Chen, L.-N., Y. C. Jiao, Z. Zhang, F. S. Zhang, and Y. Y. Chen, "Miniaturized dual-mode substrate integrated waveguide (SIW) band-pass ¯lters loaded by double/single T-shaped structures," Progress In Electromagnetics Research Letters, Vol. 29, 65-74, 2012.
doi:10.2528/PIERL11112602

25. hang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.

26. Zhou, M., M. X. Yu, J. Xu, X. C. Zhang, and M. Y. Wang, "Compact half-mode substrate integrated waveguide (HMSIW) filter with dual-mode microstrip resonator," Progress In Electromagnetics Research C, Vol. 33, 29-41, 2012.

27. Xiang, Q. Y., Q. Y. Feng, X. G. Huang, and D. H. Jia, "Substrate integrated waveguide (SIW) filters and its application to switchable filters," PIERS Proceedings, 861-863, Moscow, Russia, Aug. 19-23, 2012.

28. Djermoun, A., G. Prigent, N. Raveu, and T. Callegari, "Widely tunable high-Q SIW filter using plasma material," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1484-1486, 2010.
doi:10.1109/MWSYM.2010.5514787