Vol. 39
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-18
Comparative Evaluation of Uncertainty Transformation for Measuring Complex-Valued Quantities
By
Progress In Electromagnetics Research Letters, Vol. 39, 141-149, 2013
Abstract
This paper presents a comparative study on practical evaluation of measurement uncertainty for complex-valued RF and microwave quantities in polar coordinate. The measurement uncertainty is first evaluated in rectangular coordinate to avoid the biased effect, and then transformed into the desired polar coordinate. In this work, uncertainty coordinate transformation from rectangular coordinate to polar coordinate is focused and performed in two ways; the law of propagation of uncertainty and the coordinate rotation. Their performances are compared through practical evaluations and simulations, and found to be highly consistent when the uncertainty region is distant from the origin of a complex plane.
Citation
Yu Song Meng, and Yueyan Shan, "Comparative Evaluation of Uncertainty Transformation for Measuring Complex-Valued Quantities," Progress In Electromagnetics Research Letters, Vol. 39, 141-149, 2013.
doi:10.2528/PIERL13031507
References

1. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403

2. Azpurua, M. A., C. Tremola, and E. Paez, "Comparison of the gum and monte carlo methods for the uncertainty estimation in electromagnetic compatibility testing," Progress In Electromagnetics Research B, Vol. 34, 125-144, 2011.

3. Shan, Y., Y. S. Meng, and Z. Lin, "Generic model and case studies of microwave power sensor calibration using direct comparison transfer," IEEE Transactions on Instrumentation and Measurement, Vol. 62, 2013, DOI:10.1109/TIM.2012.2225961.
doi:10.1109/TIM.2012.2225961

4. Zhang, Q., Y. S. Meng, Y. Shan, and Z. Lin, "Direct comparison transfer of microwave power sensor calibration with an adaptor: Modeling and evaluation," Progress In Electromagnetics Research Letters, Vol. 38, 25-34, 2013.

5. BIPM, IEC, IFCC, ILAC, ISO, et al. "Evaluation of measurement data --- Guide to the expression of uncertainty in measurement,", JCGM 100 : 2008 (GUM 1995 with Minor Corrections), Joint Committee for Guides in Metrology, 2008.

6. Ridler, N. M. and J. C. Medley, "An uncertainty budget for VHF and UHF reflectometers," NPL Rep. DES 120, National Physical Laboratory, UK, 1992.

7. Ridler, N. M. and M. J. Salter, "An approach to the treatment of uncertainty in complex S-parameter measurements," Metrologia, Vol. 39, No. 3, 295-302, 2002.
doi:10.1088/0026-1394/39/3/6

8. Hall, B. D., "Calculating measurement uncertainty for complex-valued quantities," Measurement Science and Technology, Vol. 14, No. 3, 368-375, 2003.
doi:10.1088/0957-0233/14/3/316

9. Hall, B. D., "On the propagation of uncertainty in complex-valued quantities," Metrologia, Vol. 41, No. 3, 173-177, 2004.
doi:10.1088/0026-1394/41/3/010

10. Hall, B. D., "Some considerations related to the evaluation of measurement uncertainty for complex-valued quantities in radio frequency measurements," Metrologia, Vol. 44, L62-L67, 2007.
doi:10.1088/0026-1394/44/6/N04

11. Meng, Y. S. and Y. Shan, "Measurement uncertainty of complex-valued microwave quantities," Progress In Electromagnetics Research,, Vol. 136, 421-433, 2013.

12. R Development Core Team "R: A language and environment for statistical computing,", Vienna: R Foundation for Statistical Computing, 2009, http://www.r-project.org/.