login
Vol. 51
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-05-08
Focusing, Power Tunneling and Rejection from Chiral and/OR Chiral Nihility/Nihility Metamaterials Layers
By
Progress In Electromagnetics Research B, Vol. 51, 367-388, 2013
Abstract
Focusing of electromagnetic plane wave from a large paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied using Maslov's method. As a first step, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are investigated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking extreme values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also obtained for validating the methodology. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large paraboloidal reflector. The present study, on focusing from a paraboloidal reflector, not only unifies already published work by various researchers but also provides better understanding of the problem.
Citation
Syed Touseef Hussain Shah, Faiz Ahmad, Nayyar Abbas Shah, Aqeel Abbas Syed, and Qaisar Naqvi, "Focusing, Power Tunneling and Rejection from Chiral and/OR Chiral Nihility/Nihility Metamaterials Layers," Progress In Electromagnetics Research B, Vol. 51, 367-388, 2013.
doi:10.2528/PIERB13030705
References

1. Arago, D. F., "Sur une modification remarquable qu' eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomnnes d'optique," Mem. Inst., Vol. 1, 93-134, 1811.

2. Biot, J. B., "Phenomenes de polarisation successive, observs dans des fluides homogenes," Bull. Soc. Philomath., 190-192, 1815.

3. Fresnel, A., "Memoire sur la double refraction que les rayons lumineux eprouvent en traversant les aiguilles de cristal de roche suivant des directions paralleles a l'axe," Oeuvres, Vol. 1, 731-751, 1822.

4. Biot, J. B., "Memoire sur la polarisation circulaire et sur ses applications a la chimie organique," Mem. Acad. Sci., Vol. 13, 39-175, 1835.

5. Lindman, K. F., "Ober eine durch ein isotropes system von spiralformigen resonatoren erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 63, 621-644, 1920.
doi:10.1002/andp.19203682303

6. Lindman, K. F., "Uber die durch ein aktives raumgitter erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 69, 270-284, 1922.
doi:10.1002/andp.19223742004

7. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., Vol. 18, 211-216, 1979.
doi:10.1007/BF00934418

8. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

9. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. of Am. A, Vol. 5, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450

10. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994.

11. Lamb, H., "On group-velocity," Proc. London Math. Soc., Vol. 1, 473-479, 1904.

12. Schuster, A. and An Introduction to the Theory of Optics, , Edward Arnold, London, 1904.

13. Pocklington, H. C., "Growth of a wave-group when the group velocity is negative," Nature, Vol. 71, 607-608, 1905.
doi:10.1038/071607b0

14. Malyuzhinets, G. D., "A note on the radiation principle," Zh. Tekh. Fiz., Vol. 21, 940-942, 1951.

15. Sivukhin, D. V., "The energy of electromagnetic waves in dispersive media," Opt. Spektrosk., Vol. 3, 308-312, 1957.

16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

17. Qiu, C. W., H. Y. Yao, S. Zouhdi, L. W. Li, and M. S. Leong, "On the constitutive relations of G-chiral media and the possibility to realize negative-index media," Microwave Opt. Technol. Lett., Vol. 48, 2534-2538, 2006.
doi:10.1002/mop.21981

18. Tretyakov, S., A. Sihvola, and L. Jylh, "Backward-wave regime and negative refraction in chiral composites," Photonics Nanostruct. Fundam. Appl., Vol. 3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008

19. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

20. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467

21. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings," Phys. Rev. B, Vol. 75, 245214, 2007.
doi:10.1103/PhysRevB.75.245214

22. Zhang, S., Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.
doi:10.1103/PhysRevLett.102.023901

23. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative- and positive-phase-velocity propagation in an isotropic chiral medium," Microwave Opt. Technol. Lett., Vol. 49, 1245-1246, 2007.
doi:10.1002/mop.22434

24. Lakhtakia, A., "An electromagnetic trinity from negative permittivity and negative permeability," Int. J. Inf. and Mil. Wav., Vol. 22, 1731-1734, 2001.
doi:10.1023/A:1015068715023

25. Tretyakov, S., I. Nefedov, A. H. Sihvola, S. Maslovki, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

26. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201

27. Baqir, M. A., A. A. Syed, and Q. A. Naqvi, "Electromagnetic fields in a circular waveguide containing chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 16, 85-93, 2011.

28. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Willey and Sons, 2012.

29. Cheng, D. K., Fields and Wave Electromagnetics, Addison-Wesley, New York, 1989.

30. Qiu, C. W., N. Burokur, S. Zouhdi, and L. W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. of Am., Vol. 25, 55-63, 2008.

31. Ahmad, F., S. N. Ali, A. A. Syed, and Q. A. Naqvi, "Chiral and/or chiral nihility interfaces: Parametric dependence, power tunneling and rejection," Progress In Electromagnetics Research M, Vol. 23, 167-180, 2012.
doi:10.2528/PIERM11120104

32. Felson, L. B., Hybrid Formulation of Wave Propagation and Scattering, Nato Science Series E, Martinus Nijho, Dordrecht, Netherlands, 1984.

33. Dechamps, G. A., "Ray techniques in electromagnetics," Proc. IEEE, Vol. 60, 1022-1035, 1972.

34. Chapman, C. H. and R. Drummond, "Body wave seismograms in inhomogeneous media using Maslov asymptotic theory," Bull. Seismol., Soc. Am., Vol. 72, 277-317, 1982.

35. Maslov, V. P., Perturbation theory and asymptotic method, Gos. Moskov. Univ., Moscow, 1965 (in Russian), Translated into Japanese by Ouchi et al., Iwanami, Tokyo, 1976.

36. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602

37. Ji, Y. and K. Hongo, "Analysis of electromagnetic waves refracted by a spherical dielectric interface by Maslov's method," J. Opt. Soc. of Am. A, Vol. 8, 541-548, 1991.
doi:10.1364/JOSAA.8.000541

38. Ji, Y. and K. Hongo, "Field in the focal region of a dielectric spherical lens by Maslov's method," J. Opt. Soc. of Am. A, Vol. 8, 1721-1728, 1991.
doi:10.1364/JOSAA.8.001721

39. Hongo, K., K., Y. Ji, and E. Nakajima, "High frequency expression for the field in the caustic region of a reflector using Maslov's method ," Radio Sci., Vol. 21, 911-919, 1986.
doi:10.1029/RS021i006p00911

40. Hongo, K. and Y. Ji, "High frequency expression for the field in the caustic region of a cylindrical reflector using Maslov's method," Radio Sci., Vol. 22, 357-366, 1987.
doi:10.1029/RS022i003p00357

41. Hongo, K. and Y. Ji, "Study of the field around the focal region of spherical reflector antenna by Maslovs method," IEEE Trans. Antennas Propagat., Vol. 36, 592-598, 1988.
doi:10.1109/8.192134

42. Ziolkowski, R. W. and G. A. Deschamps, "Asymptotic evaluation of high frequency field near a caustic: An introduction to Maslov's method," Radio Sci., Vol. 19, 1001-1025, 1984.
doi:10.1029/RS019i004p01001

43. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of cylindrical reflector placed in chiral medium," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401

44. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of a parabolic reflector coated with isotropic chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 965-986, 2008.
doi:10.1163/156939308784150092

45. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703

46. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves re°ected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216

47. Sabah, C. and S. Uckun, "Mirrors with chiral slabs," Journal of Optoelectronics and Advanced Materials, Vol. 8, 1918-1924, 2006.