1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, 2005.
2. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101
3. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar - Signal Processing and Algorithms, Artech House, Boston, MA, 1995.
4. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703
5. Cantalloube, H. and P. Dubois-Fernandez, "Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results," IEE Proc Radar Sonar Navig., Vol. 152, 163-176, 2006.
doi:10.1049/ip-rsn:20045097
6. Mittermayer, J., B. Schattler, and M. Younis, "TerraSAR-X commissioning phase execution summary," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 649-659, 2010.
doi:10.1109/TGRS.2009.2026744
7. Lanari, R., P. Franceschetti, M. Tesauro, and E. Sansosti, "Spotlight SAR image generation based on strip mode focusing techniques," Proc. IGARSS, 1761-1763, Hamburg, Germany, 1999.
8. Lanari, R., M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 9, 1993-2004, 2001.
doi:10.1109/36.951090
9. Ren, X.-Z., Y. Qin, and L. H. Qiao, "Interferometric properties and processing for spaceborne spotlight SAR," Progress In Electromagnetics Research B, Vol. 36, 267-281, 2012.
doi:10.2528/PIERB11090609
10. Xu, W., P. P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.
11. Prati, C., A. M. Guarnieri, and F. Rocca, "Spot mode SAR focusing with the omega-k technique," Proc. IGARSS, 631-634, Helsinki, Finland, 1991.
12. Mittermayer, J., A. Moreira, and O. Loffeld, "Spotlight SAR data processing using the frequency scaling algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2198-2214, 1999.
doi:10.1109/36.789617
13. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254
14. Moreira, A. and Y. Huan, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891
15. Davidson, G. W. and I. G. Cumming, "Signal properties of spaceborne squint mode SAR," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 3, 611-617, 1997.
doi:10.1109/36.581976
16. An, D. X., X. T. Huang, T. Jin, and Z. M. Zhou, "Extended two-step focusing approach for squinted spotlight SAR imaging," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 7, 2889-2900, 2012.
doi:10.1109/TGRS.2011.2174460
17. An, D. X., Z. M. Zhou, X. T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110
18. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proc Radar Sonar Navig., Vol. 153, No. 3, 301-310, 2006.
doi:10.1049/ip-rsn:20045087
19. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.
20. Wong, F. H. and T. S. Yeo, "New application of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412
21. Kim, K. T., S. H. Park, and J. I. Park, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.