Vol. 30
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-18
Retrieving Evaporation Duct Heights from Power of Ground-Based GPS Occultation Signal
By
Progress In Electromagnetics Research M, Vol. 30, 183-194, 2013
Abstract
Evaporation duct is a manifest phenomenon that can affect microwave propagation seriously with low elevation angles near the sea surface. As an important parameter to describe the characteristic of the evaporation duct, duct height can be estimated from radar sea echo using a technique called as "refractivity from clutter". In this study, we proposed a novel approach to estimating the evaporation duct height. The signal power received by a ground-based GPS receiver is used when the GPS satellites rise or set at the local horizon over the sea. A forward propagation model and genetic algorithm are adopted to implement this method. The performance is evaluated via numerical simulation for inferring evaporation duct with different height. The results showed that the proposed method is well effective, especially for the conditions with higher evaporation duct height.
Citation
Hong-Guang Wang, Zhen-Sen Wu, Leke Lin, Shi-Feng Kang, and Zhenwei Zhao, "Retrieving Evaporation Duct Heights from Power of Ground-Based GPS Occultation Signal," Progress In Electromagnetics Research M, Vol. 30, 183-194, 2013.
doi:10.2528/PIERM13022602
References

1. Hitney, H. and R. Vieth, "Statistical assessment of evaporation duct propagation," IEEE Transactions on Antennas and Propagation, Vol. 38, 794-799, 1990.
doi:10.1109/8.55574

2. Gunashekar, S. D., E. M. Warrington, and D. R. Siddle, "Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel," Radio Science, Vol. 45, No. 6, 2010.

3. Paulus, R. A., "Evaporation duct effects on sea clutter," IEEE Transactions on Antennas and Propagation, Vol. 38, 1765-1771, 1990.
doi:10.1109/8.102737

4. Frederickson, P. A., J. T. Murphree, K. L. Twigg, et al. "A modern global evaporation duct climatology," 2008 International Conference on Radar, 292-296, 2008.
doi:10.1109/RADAR.2008.4653934

5. Hitney, H. V., "Evaporation duct assessment from meteorological buoys," Radio Science, Vol. 37, 8/1-8/7, 2002.

6. Babin, S. M. and G. D. Dockery, "LKB-based evaporation duct model comparison with buoy data," Journal of Applied Meteorology, Vol. 41, 434-446, 2002.
doi:10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2

7. Zhao, X., "Evaporation duct height estimation and source localization from field measurements at an array of radio receivers," IEEE Transactions on Antennas and Propagation, Vol. 60, 1020-1025, 2012.
doi:10.1109/TAP.2011.2173115

8. Rogers, L. T., C. P. Hattan, and J. K. Stapleton, "Estimating evaporation duct heights from radar sea echo," Radio Science, Vol. 35, 955-966, 2000.
doi:10.1029/1999RS002275

9. Wang, B., Z.-S. Wu, Z.-W. Zhao, et al. "A passive technique to monitor evaporation duct height using coastal GNSS-R," IEEE Geoscience and Remote Sensing Letters, Vol. 8, 587-591, 2011.
doi:10.1109/LGRS.2010.2096456

10. Gerstoft, P., L. T. Rogers, J. L. Krolik, et al., "Inversion for refractivity parameters from radar sea clutter," Radio Science, Vol. 38, MAR18/1-MAR18/22, 2003.

11. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis," IEEE Transactions on Antennas and Propagation, Vol. 54, 1318-1327, 2006.
doi:10.1109/TAP.2006.872673

12. Karimian, A., C. Yardim, P. Gerstoft, et al. "Refractivity estimation from sea clutter: An invited review," Radio Science, Vol. 46, RS6013, Dec. 24, 2011.

13. Zhang, J. P., Z.-S. Wu, Y. S. Zhang, and B. Wang, "Evaporation duct retrieval using changes in radar sea clutter power versus receiving height," Progress In Electromagnetics Research, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307

14. Zhang, J. P., Z.-S. Wu, Q.-L. Zhu, and B. Wang, "A four-parameter M-profile model for the evaporation duct estimation from radar clutter," Progress In Electromagnetics Research, Vol. 114, 353-363, 2011.

15. Wang, B., Z.-S. Wu, Z. Zhao, and H.-G. Wang, "Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm," Progress In Electromagnetics Research M, Vol. 9, 79-91, 2009.
doi:10.2528/PIERM09090403

16. Wang, H. G., Z. S. Wu, S. F. Kang, et al. "Monitoring the marine atmospheric refractivity profiles by ground-based GPS occultation," IEEE Geoscience and Remote Sensing Letters, 1-4, 2012.
doi:10.1109/LGRS.2012.2227294

17. Ao, C. O., "Effect of ducting on radio occultation measurements: An assessment based on high-resolution radiosonde soundings," Radio Science, Vol. 42, No. 2, 2007.
doi:10.1029/2006RS003485

18. Douchin, N., S. Bolioli, F. Christophe, et al. "Theoretical study of the evaporation duct effects on satellite-to-ship radio links near the horizon," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 141, No. 4, 272-278, 1994.
doi:10.1049/ip-map:19941168

19. Zhang, J., Z. Wu, B. Wang, et al. "Modeling low elevation GPS signal propagation in maritime atmospheric ducts," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 80, 12-20, 2012.
doi:10.1016/j.jastp.2012.02.019

20. Dockery, D. G. and J. R. Kuttler, "Improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation," IEEE Transactions on Antennas and Propagation, Vol. 44, 1592-1599, 1996.
doi:10.1109/8.546245

21. ITU-R P.453-10 "The radio refractive index: Its formula and refractivity data,", 2012.