Vol. 39
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-12
Experimental Verification of a Triple Band Thin Radar Absorber Metamaterial for Oblique Incidence Applications
By
Progress In Electromagnetics Research Letters, Vol. 39, 63-72, 2013
Abstract
This paper presents the theory, design, and experimental investigation of an ultra thin (6% λ0) and triple band metamaterial radar absorber. The theoretical design of the reported absorber is investigated. The absorber performance was validated using the electromagnetic simulations and confirmed by experimental measurements for different incidence angles. The results confirm that the proposed metamaterial absorber can demonstrate triple bands with better than -15 dB reflection coefficient for all incident angles.
Citation
Mahmoud Abdelrahman Abdalla, "Experimental Verification of a Triple Band Thin Radar Absorber Metamaterial for Oblique Incidence Applications," Progress In Electromagnetics Research Letters, Vol. 39, 63-72, 2013.
doi:10.2528/PIERL13022207
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9

2. Fante, R. L. and M. T. McCormack, "Reflection properties of Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, 1443-1454, 1988.
doi:10.1109/8.8632

3. Knott, E. F. and C. D Lunden, "The two-sheet capacitive Jaumann absorber," IEEE Transactions on Antennas and Propagation, Vol. 43, 1339-1343, 1995.

4. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 57, 2307-2314, 2009.
doi:10.1109/TAP.2009.2024490

5. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microw. Wireless Compon. Lett., Vol. 14, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

6. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

7. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

8. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

9. Engehta, N., "Thin absorbing screens using metamaterial surfaces," Digests IEEE AP-S/URSI Symp., 392-395, 2002.

10. Costa, F., A. Monorchio, and G. Manara, "Ultra-thin absorber by using high impedance surfaces with frequency selective surfaces," Digests IEEE AP-S Int. Symp., 861-864, 2007.

11. Mias, C. and J. H. Yap, "A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid," IEEE Transactions on Antennas and Propagation, Vol. 55, 1955-1962, 2007.
doi:10.1109/TAP.2007.900228

12. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers," J. . Appl. Phys, Vol. 108, 083113-1-083113-6, 2010.
doi:10.1063/1.3493736

13. Costa, F. and A. Monorchio, "Multiband electromagnetic wave absorber based on reactive impedance ground planes," IET Microwaves, Antennas & Propagation, Vol. 4, 1720-1727, 2010.
doi:10.1049/iet-map.2009.0359

14. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

15. Zhu, , B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802

16. Ohira, M., H. Deguchi, M. Tsuji, H. Shigesawa, "Multilband single layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Transactions on Antennas and Propagation, Vol. 52, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289

17. Shen, , Z., B. Zheng, Z. Mei, J. Yang, W. Tang, "On the design of wide-band and thin absorbers using the multiple resonances concept," Digests International Conference on Microwave and Millimeter Wave Technology, 32-35, 2008.

18. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications," John Wiey & Sons, 2006.