Vol. 39
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-04-23
Vector Clustering of Passive Millimeter Wave Images with Linear Polarization for Concealed Object Detection
By
Progress In Electromagnetics Research Letters, Vol. 39, 169-180, 2013
Abstract
Passive millimeter (MMW) imaging can penetrate clothing to create interpretable imagery of concealed objects. However, the image quality is often restricted by low signal to noise ratio and temperature contrast as well as low spatial resolution. In this paper, we explore a four-channel passive MMW imaging system operating in the 8 and 3 mm wavelength regimes with linear vertical and horizontal polarization directions. Both registration between different channel images and segmentation of concealed objects are addressed. Multi-channel image registration is performed by geometric feature matching and affine transform, and then multi-level segmentation separates the human body region from the background, and concealed objects from the body region, sequentially. In the experiments, several metallic and non-metallic objects concealed under clothing are captured in indoors. It will be shown that our method can separate objects with higher accuracy than the conventional method.
Citation
Seokwon Yeom, Dongsu Lee, Hyoung Lee, Joungyoung Son, and Vladimir P. Gushin, "Vector Clustering of Passive Millimeter Wave Images with Linear Polarization for Concealed Object Detection," Progress In Electromagnetics Research Letters, Vol. 39, 169-180, 2013.
doi:10.2528/PIERL13021907
References

1. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

2. Mohammad-Taheri, M., M. Fahimnia, Y. Wang, M. Yu, and S. Safavi-Naeini, "Wave analysis for inductively matched millimeter wave amplifier design," Progress In Electromagnetics Research C, Vol. 13, 41-50, 2010.
doi:10.2528/PIERC09112508

3. Siles, G. A., J. M. Riera, P. Garcia-del-Pino, and J. Romeu, "Atmospheric propagation at 100 and 300 GHz: Assessment of a method to identify rainy conditions during radio soundings," Progress In Electromagnetics Research, Vol. 13, 257-279, 2012.

4. Chen, H.-M., S. Lee, R. M. Rao, M.-A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, 52-61, 2005.
doi:10.1109/MSP.2005.1406480

5. Kim, W.-H., N.-W. Moon, H.-K. Kim, and Y.-H. Kim, "Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition," Progress In Electromagnetics Research, Vol. 136, 175-193, 2013.

6. Appleby, R. and R. N. Anderton, "Millimeter-wave and submillimeter-wave imaging for security and surveillance," Proceedings of the IEEE, Vol. 95, 1683-1690, 2007.
doi:10.1109/JPROC.2007.898832

7. Yujiri, L., M. Shoucri, and P. Moffa, "Passive millimeter-wave imaging," IEEE Microwave Magazine, Vol. 4, 39-50, 2003.
doi:10.1109/MMW.2003.1237476

8. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. Vertiy, "A study on millimeter-wave imaging of concealed objects: applications using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.

9. Cooper, K. B., R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, I. Mehdi, and P. H. Siegel, "An approach for sub-second imaging of concealed objects using terahertz (THz) radar," J. Infrared, Milli. Terahz Waves, Vol. 30, 1297-1307, 2009.

10. Gonzalez, R. C., Digital Image Processing 2/E, Prentice-Hall Inc., 2003.

11. Delignon, Y., A. Marzouki, and W. Pieczynski, "Estimation of generalized mixtures and its application in image segmentation," IEEE Trans. on Image Processing, Vol. 6, No. 10, 1364-1375, 1997.
doi:10.1109/83.624951

12. Farnoosh, R. and B. Zarpak, "Image segmentation using Gaussian mixture model," IUST Int. J. Engineering Science, Vol. 19, 29-32, 2008.

13. Comer, M. L. and E. J. Delp, "Segmentation of textured images using a multiresolution Gaussian autoregressive model," IEEE Trans. on Image Processing, Vol. 8, 408-420, 1999.
doi:10.1109/83.748895

14. Shen, X., C. R. Dietlein, E. Grossman, Z. Popovic, and F. G. Meyer, "Detection and segmentation of concealed objects in Terahertz images," IEEE Trans. on Image Processing, Vol. 17, 2465-2475, 2008.
doi:10.1109/TIP.2008.2006662

15. Haworth, C. D., Y. De Saint-Pern, D. Clark, E. Trucco, and Y. R. Petillot, "Detection and tracking of multiple metallic objects in millimeter-wave images," International Journal of Computer Vision, Vol. 71, 183-196, 2007.
doi:10.1007/s11263-006-6275-8

16. Yeom, S., D.-S. Lee, J.-Y. Son, M.-K. Jung, Y. Jang, S.-W. Jung, and S.-J. Lee, "Real-time outdoor concealed-object detection with passive millimeter wave imaging," Opt. Express, Vol. 19, 2530-2536, 2011.
doi:10.1364/OE.19.002530

17. Yeom, S., D.-S. Lee, and J.-Y. Son, "Multi-level segmentation of passive millimeter wave images for hidden object detection," Optical Engineering, Vol. 51, 091613, 2012.
doi:10.1117/1.OE.51.9.091613

18. Bishop, C. M., Neural Networks for Pattern Recognition, Chap. 2, Oxford, 1995.

19. Lee, H., D.-S. Lee, S. Yeom, J.-Y. Son, V. P. Guschin, and S.-H. Kim, "Image registration and fusion between passive millimeter wave images and visual images," Journal of the Korean Institute of Communications and Information Sciences, Vol. 36, 349-354, 2011.
doi:10.7840/KICS.2011.36C.6.349