Vol. 50
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-12
Novel Multi-Dimensional Wcawe Technique for the Efficient Calculation of RCS
By
Progress In Electromagnetics Research B, Vol. 50, 315-329, 2013
Abstract
In this paper, a novel moment-matching reduced order model technique termed the multi-dimensional well-conditioned asymptotic waveform evaluation (MDWCAWE) method is presented. The MDWCAWE method can be used to efficiently determine the radar cross section (RCS) of arbitrarily shaped objects, in both the frequency and angular domains simultaneously. Numerical results are given in order to demonstrate the accuracy and robustness of the MDWCAWE method. All scattering problems investigated in this work are formulated using the two-dimensional volume-surface electric field integral equation (EFIE). We consider problems involving scattering from both dielectric dispersive and conducting objects.
Citation
Patrick J. Bradley, "Novel Multi-Dimensional Wcawe Technique for the Efficient Calculation of RCS," Progress In Electromagnetics Research B, Vol. 50, 315-329, 2013.
doi:10.2528/PIERB13021102
References

1. Ewe, , W. B., L. W. Li, and M. S. Leong, "Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive Integral method," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 1, 3071-3077, 2004.
doi:10.1109/TAP.2004.835147

2. Tong, , C., P. Yan, Z. Huang, and F. Geng, "Simultaneous extrapolation of RCS of a radar target in both angular and frequency domains based on bivariate Pade approximant technique," Proc. Asia-Pacific Microwave Proceedings, Vol. 3, 1-4, 2005.

3. Gudu, , T. and L. Alatan, "Use of asymptotic waveform evaluation technique in the analysis of multilayer structures with doubly periodic dielectric gratings," IEEE Trans. on Antennas and Propagation , Vol. 57, No. 9, 2641-2649, 2009.
doi:10.1109/TAP.2009.2027050

4. Olsson, , K. H. A., "Model order reduction with rational krylov methods," Ph.D. Thesis, KTH Computer Science and Communication,, 2005.

5. Grimme, , E. J., "Krylov projection methods for model reduction," Ph.D. Thesis, Coordinated-Science Laboratory, University of Illinois at Urbana-Champaign, , 1997.

6. Salimbahrami, , B. and B. Lohmann, "Order reduction of large scale second-order systems using Krylov subspace methods," Linear Algebra and Its Applications , Vol. 415, No. 2--3, 385-405, 2006.
doi:10.1016/j.laa.2004.12.013

7. Bai, , Z. and Y. Su, "SOAR: A second-order Arnoldi method for the solution of the quadratic eigenvalue problem," SIAM J. Matrix Anal. Appl., Vol. 26, No. 3, 640-659, Mar. 2005.
doi:10.1137/S0895479803438523

8. Koyama, , T. and S. Govindjee, "Moment matching theorems for dimension reduction of higher order dynamical systems via higher order Krylov subspaces," Department of Civil and Environmental Engineering, University of California, 2008.

9. Li, , Y.-T., Z. Bai, Y. Su, and X. Zeng, "Model order reduction of parameterized interconnect networks via a two-directional Arnoldi process," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 9, 1571-1582, Sept. 2008.
doi:10.1109/TCAD.2008.927768

10. Bradley, , P., C. Brennan, M. Condon, and M. Mullen, "Accelerated source-sweep analysis using a reduced-order model approach," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 11, 4360-4363, Nov. 2011.
doi:10.1109/TAP.2011.2164210

11. Slone, , R. D., R. Lee, and J.-F. Lee, "Well-conditioned asymptotic waveform evaluation for finite elements," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 9, 2442-2447, Sep. 2003.
doi:10.1109/TAP.2003.816321

12. Farle, O. and R. Dyczij-Edlinger, "Numerically stable moment matching for linear systems parameterized by polynomials in multiple variables with applications to finite element models of microwave structures," IEEE Trans. on Antennas and Propagation, Vol. 58, No. 11, 3675-3684, Nov. 2010.
doi:10.1109/TAP.2010.2071368

13. Farle, O., V. Hilla, P. Ingelstrma, and R. Dyczij-Edlinger, "Multiparameter polynomial order reduction of linear finite element models," Mathematical and Computer Modelling of Dynamical Systems, Vol. 14, No. 5, 421-434, 2008.
doi:10.1080/13873950701844220

14. Ahmadloo, , M. and A. Dounavis, "Parameterized model-order reduction for e±cient eigenanalysis of dielectric waveguide structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 12, 2851-2851, 2008.
doi:10.1109/TMTT.2008.2007195

15. Peterson, , A. F.S. L. Ray, and R. Mittra, "Computational Methods for Electromagnetics," IEEE Press Series on Electromagnetic Wave Theory , 1st Ed., Wiley-IEEE Press, Piscataway, New Jersey, USA, 1997.
doi:10.1109/9780470544303

16. Fasenfest, , B., J. D. Rockway, N. J. Champagne, and R. M. Sharpe, "A generalized fast frequency sweep algorithm for coupled circuit EM simulations ," Proc. IEEE Antennas and Propagation Society International Symposium, Vol. 4, 3944-3947, Jun. 2004.

17. Slone, , R. D., "Fast frequency sweep model order reduction of polynomial matrix equations resulting from finite element discretizations," Ph.D. Thesis, Ohio State Univ. , 2002.

18. Bradley, , P., C. Brennan, and M. Condon, "Effcient wideband electromagnetic scattering computation for frequency dependent lossy dielectrics using WCAWE," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 10, 3274-3282, 2009.
doi:10.1109/TAP.2009.2028591

19. Gong, , Y. X., R. Mittra, L. Zhen, and W. Z. Shao, "Design of a two-layer ultra-wideband microwave absorber," IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.

20. Jorba, , A, M. Zou, and , "A software package for the numerical integration of odes by means of high-order taylor methods," Experimental Mathematics Exp. , Vol. 14, 99-117, 2005.
doi:10.1080/10586458.2005.10128904

21. Abramowitz, , M., I. A. Stegun, and , "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", 1964.