Vol. 50
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-02
On the Feasibility of 320 GB/S All-Optical and Gate Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer
By
Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013
Abstract
The feasibility of realizing an all-optical AND gate for 320 Gb/s return-to-zero data by incorporating quantum-dot semiconductor optical amplifiers (QD-SOAs) in a Mach-Zehnder interferometer (MZI) is theoretically investigated and demonstrated. The proposed scheme employs the QD-SOA-based MZI in a configuration where the QD-SOA in one MZI arm is subject to the first data sequence, the QD-SOA in the other MZI arm receives no such input but is constantly held in the small signal gain regime, and the second data stream is inserted from the common MZI port acting as enabling or disabling signal. Compared to other approaches adopted for the same purpose this implementation is more general, direct, flexible and affordable as only one strong data signal is required to control switching. By conducting numerical simulation the impact of the critical parameters on the Q-factor is thoroughly assessed. The obtained results are interpreted with the help of a complete characterization of the QD-SOA response to an ultrafast data pulse stream. This allows to specify the requirements that the critical parameters must satisfy to achieve acceptable performance. The extracted design rules are technologically realistic and ensure AND operation both with logical correctness and high quality. The outcome of the numerical treatment extends the range of Boolean functions executed with the QD-SOA-MZI module at sub-Tb/s data rates.
Citation
Evangelia Dimitriadou, and Kyriakos E. Zoiros, "On the Feasibility of 320 GB/S All-Optical and Gate Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach-Zehnder Interferometer," Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013.
doi:10.2528/PIERB13013108
References

1. Houbavlis, , T., K. E. Zoiros, M. Kalyvas, G. Theophilopoulos, C. Bintjas, K. Yiannopoulos, N. Pleros, K. Vlachos, vramopoulos, and L. Schares, "All-optical signal processing and applications within the Esprit project DO ALL," Journal of Lightwave Technology, Vol. 23, No. 2, 781-801, 2005.
doi:10.1109/JLT.2004.838854

2. Zoiros, , K. E., T. Houbavlis, and M. Kalyvas, "Ultra-high speed all-optical shift registers and their applications in OTDM networks," Optical and Quantum Electronics, Vol. 36, No. 11, 1005-1053, 2004.
doi:10.1007/s11082-004-2040-9

3. Hamilton, , S. A., B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, "100 Gb/s optical time-division multiplexed networks," Journal of Lightwave Technology,, Vol. 20, No. 12, 2086-2100, 2002.
doi:10.1109/JLT.2002.806781

4. De Melo, A. M., S. Randel, and K. Petermann, "Mach-Zehnder interferometer-based high-speed OTDM add-drop multiplexing," Journal of Lightwave Technology, Vol. 25, No. 4, 1017-1026, 2007.
doi:10.1109/JLT.2007.891974

5. Kanellos, , G. T., L. Stampoulidis, N. Pleros, T. Houbavlis, D. Tsiokos, E. Kehayas, H. Avramopoulos, and G. Guekos, "Clock and data recovery circuit for 10-Gb/s asynchronous optical packets," IEEE Photonics Technology Letters, Vol. 15, No. 11, 1666-1668, 2003.
doi:10.1109/LPT.2003.818647

6. Ji, W., M. Zhang, and P. Ye, "All-optical-packet header and payload separation for unslotted optical-packet-switched networks," Journal of Lightwave Technology, Vol. 25, No. 3, 703-709, 2007.
doi:10.1109/JLT.2006.890423

7. Webb, R. P., X. Yang, R. J. Manning, G. D. Maxwell, A. J. Poustie, S. Lardenois, and D. Cotter, "All-optical binary pattern recognition at 42 Gb/s," Journal of Lightwave Technology , Vol. 27, No. 13, 2240-2245, 2009.
doi:10.1109/JLT.2008.2006067

8. Wang, J., G. Meloni, G. Berrettini, L. PotI, and A. Bogoni, "All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 5, 1486-1494, 2010.
doi:10.1109/JSTQE.2009.2039199

9. Ghaffari, , B. M. and J. A. Salehi, "Applications and performance of optical analog-to-digital converter and optical logic gate elements in multilevel multiclass fiber-optic CDMA systems," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 5, 1476-1485, 2010.
doi:10.1109/JSTQE.2009.2037161

10. Wang, Y., X. Zhang, J. Dong, and D. Huang, "Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers," Optics Express, Vol. 15, No. 23, 15080-15085, 2007.
doi:10.1364/OE.15.015080

11. Leclerc, , O., B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," Journal of Lightwave Technology, Vol. 21, No. 11, 2779-2790, 2003.
doi:10.1109/JLT.2003.819148

12. Westlund, , M., P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High performance optical-fiber-nonlinearity-based optical waveform monitoring," Journal of Lightwave Technology, Vol. 23, No. 6, 2012-2022, 2005.
doi:10.1109/JLT.2005.849927

13. Kim, , S. H., J. H. Kim, J. W. Choi, C. W. Son, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, "All-optical half adder using cross gain modulation in semiconductor optical amplifiers," Optics Express, Vol. 14, No. 22, 10693-10698, 2006.
doi:10.1364/OE.14.010693

14. Gayen, , D. K., T. Chattopadhyay, R. K. Pal, and J. N. Roy, "All-optical multiplication with the help of semiconductor optical amplifier-assisted Sagnac switch ," Journal of Computational Electronics, Vol. 9, No. 2, 57-67, 2010.
doi:10.1007/s10825-010-0305-z

15. Kumar, , S. and A. E. Willner, "Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA," Optics Express,, Vol. 14, No. 12, 5092-5097, 2006.
doi:10.1364/OE.14.005092

16. Jung, , Y. J., C. W. Son, Y. M. Jhon, S. Lee, and N. Park, "One-level simplification method for all-optical combinational logic circuits," IEEE Photonics Technology Letters, Vol. 20, No. 10, 800-802, 2008.
doi:10.1109/LPT.2008.921125

17. Dagens, , B., A. Labrousse, R. Brenot, B. Lavigne, and M. Renaud, "SOA-based devices for all-optical signal processing," Proceedings of Optical Fiber Communication Conference,, 582-583, 2003.

18. Ying, C.-L., H.-H. Lu, W.-S. Tsai, H.-C. Peng, and C.-H. Lee, "To employ SOA-based optical SSB modulation technique in full-duplex RoF transport system," Progress In Electromagnetics Research Letters, Vol. 7, 1-13, 2009.
doi:10.2528/PIERL09011101

19. Wu, , J.-W., D.-X. Tian, and H.-B. Bao, "A designed model about amplification and compression of picoseconds pulse using cascaded SOA and NOLM device," Progress In Electromagnetics Research, Vol. 76, 127-139, 2007.
doi:10.2528/PIER07062003

20. Ying, , C.-L., C.-H. Chang, Y.-L. Houng, H.-H. Lu, W.-S. Tsai, and H.-S. Su, "Down link CATV/FTTH and up-link FFTH transport systems based on re°ective semiconductor opticalamplifier," Progress In Electromagnetics Research C, Vol. 11, 109-120, 2009.
doi:10.2528/PIERC09101503

21. Soto, , H., C. A. Diaz, J. Topomondzo, D. Erasme, L. Schares, and G. Guekos, "All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 14, No. 4, 498-500, 2002.
doi:10.1109/68.992590

22. Kim, , J. H., B. C. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H.Woo, and S. H. Kim, "All-optical AND gate using cross-gain modulation in semiconductor optical amplifiers," Japanese Journal of Applied Physics , Vol. 43, No. 2, 608-610, 2004.
doi:10.1143/JJAP.43.608

23. Zhang, X., Y. Wang, J. Sun, D. Liu, and D. Huang, "All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs," Optics Express, Vol. 12, No. 3, 361-366, 2004.
doi:10.1364/OPEX.12.000361

24. Sharaiha, , A., J. Topomondzo, and P. Morel, "All-optical logic AND-NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier," Optics Communications, Vol. 265, No. 1, 322-325, 2006.
doi:10.1016/j.optcom.2006.03.036

25. Berrettini, , G., A. Simi, A. Malacarne, A. Bogoni, and L. Poti, "Ultrafast integrable and reconfiurable XNOR, AND, NOR, and NOT photonic logic gate," IEEE Photonics Technology Letters, Vol. 18, No. 8, 917-919, 2006.
doi:10.1109/LPT.2006.873570

26. Li, , Z., G. Li, and , "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 18, No. 12, 1341-1343, 2006.
doi:10.1109/LPT.2006.877008

27. Guo, , L. Q. and M. J. Connelly, "All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier," Optics Express, Vol. 14, No. 7, 2938-2943, 2006.
doi:10.1364/OE.14.002938

28. Patel, , N. S., K. L. Hall, and K. A. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing," Applied Optics, Vol. 37, No. 14, 2831-2841, 1998.
doi:10.1364/AO.37.002831

29. Dong, , H., H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, "80 Gb/s all-optical logic AND operation using Mach-Zehnder interferometer with differential scheme ," Optics Communications, Vol. 265, No. 1, 79-83, 2006.
doi:10.1016/j.optcom.2006.02.045

30. Feng, C., J. Wu, K. Xu, and J. Lin, "Simple ultrafast all-optical AND logic gate," Optical Engineering, Vol. 46, No. 12, 2007.

31. Martinez, J. M., F. Ramos, and J. Marti, "10 Gb/s reconfigurable optical logic gate using a single hybrid-integrated SOA-MZI," Fiber and Integrated Optics, Vol. 27, No. 1, 15-23, 2008.
doi:10.1080/01468030701715948

32. Singh, , S. and Lovkesh, "Ultrahigh speed optical signal processing logic based on an SOA-MZI," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 2, 970-977, 2012.
doi:10.1109/JSTQE.2011.2155623

33. Mork, J., M. L. Nielsen, and T. W. Berg, "The dynamics of semiconductor optical amplifiers: Modeling and applications," Optics and Photonics News, Vol. 14, No. 7, 42-48, 2003.
doi:10.1364/OPN.14.7.000042

34. Mulvad, , H. C. H., M. Galili, L. K. Oxenlowe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, "Demonstration of 5.1 Tb/s data capacity on a single-wavelength channel," Optics Express, Vol. 18, No. 2, 1438-1443, 2010.
doi:10.1364/OE.18.001438

35. Ji, , W., M. Zhang, and P. Ye, "Simulation of an all-optical XOR gate with a semiconductor optical amplifier Mach-Zehnder interferometer sped up by a continuous-wave assistant light," Journal of Optical Networking, Vol. 4, No. 8, 524-530, 2005.
doi:10.1364/JON.4.000524

36. Randel, S., A. M. de Melo, K. Petermann, V. Marembert, and C. Schubert, "Novel scheme for ultrafast all-optical XOR operation," Journal of Lightwave Technology, Vol. 22, No. 12, 2808-2815, 2004.
doi:10.1109/JLT.2004.833282

37. Sun, , H., Q. Wang, H. Dong, Z. Chen, N. K. Dutta. J. Jaques, and A. B. Piccirilli, "All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI," IEEE Journal of Quantum Electronics, Vol. 42, No. 8, 747-751, 2006.
doi:10.1109/JQE.2006.878184

38. Gutierrez-Castrejion, R., "Turbo-switched Mach-Zehnder interfer-ometer performance as all-optical signal processing element at 160 Gb/s," Optics Communications,, Vol. 282, No. 22, 4345-4352, 2009.
doi:10.1016/j.optcom.2009.08.015

39. Webb, R. P., R. J. Manning, G. D. Maxwell, and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer," Electronics Letters, Vol. 39, No. 1, 79-81, 2003.
doi:10.1049/el:20030010

40. Kang, I., M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, and J. Jaques, "All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical ampli¯er Mach-Zehnder interferometers," Optics Express, Vol. 17, No. 21, 19062-19066, 2009.
doi:10.1364/OE.17.019062

41. Berg, , T. W. and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 40, No. 11, 1527-1539, 2004.
doi:10.1109/JQE.2004.835114

42. Akiyama, , T., M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23dBm achieved with quantum dots," IEEE Photonics Technology Letters, Vol. 17, No. 8, 1614-1616, 2005.
doi:10.1109/LPT.2005.851884

43. Yasuoka, , N., K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, "Quantum-dot semiconductor optical amplifiers with polarization-independen gains in 1.5-um wavelength bands," IEEE Photonics Technology Letters, Vol. 20, No. 23, 1908-1910, 2008.
doi:10.1109/LPT.2008.2004695

44. Zilkie, A. J., J. Meier, M. Mojahedi, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and , "Carrier dynamics of quantum-dot, quantum-dash and quantum-well semiconductor optical amplifier operating at 1.55 um," IEEE Journal of Quantum Electronics, Vol. 43, No. 11, 982-991, 2007.
doi:10.1109/JQE.2007.904474

45. Sugawara, , M., T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, "Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gbs-1 and a new scheme of 3R regenerators," Measurement Science and Technology, Vol. 13, No. 11, 1683-1691, 2002.
doi:10.1088/0957-0233/13/11/304

46. Uskov, , A. V., E. P. O'Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, "On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers," IEEE Photonics Technology Letters,, Vol. 16, No. 5, 1265-1267, 2004.
doi:10.1109/LPT.2004.826260

47. Schreieck, , R. P., M. H. Kwakernaak, H. Jackel, and H. Melchior, "All-optical switching at multi-100-Gb/s data rates with Mach-Zehnder interferometer switches," IEEE Journal of Quantum Electronics, Vol. 38, No. 8, 1053-1061, 2002.
doi:10.1109/JQE.2002.800994

48. Sun, , H., Q. Wang, H. Dong, and N. K. Dutta, "All-optical logic performance of quantum-dot semiconductor amplifier-based devices," Microwave and Optical Technology Letters,, Vol. 48, No. 1, 29-35, 2006.
doi:10.1002/mop.21252

49. Han, , H., M. Zhang, P. Ye, and F. Zhang, "Parameter design and performance analysis of an ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer," Optics Communications,, Vol. 281, No. 20, 5140-5145, 2008.
doi:10.1016/j.optcom.2008.07.020

55. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 45, No. 1, 34-41, 2009.
doi:10.1109/JQE.2008.2003497

51. Rostami, , A., H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 3, 354-360, 2010.
doi:10.1109/JQE.2009.2033253

52. Dimitriadou, , E. and K. E. Zoiros, "On the design of ultrafast all-optical NOT gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics and Laser Technology, Vol. 44, No. 3, 600-607, 2012.
doi:10.1016/j.optlastec.2011.08.028

53. Dimitriadou, E. and K. E. Zoiros, "Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Optics Communications , Vol. 285, No. 7, 1710-1716, 2012.
doi:10.1016/j.optcom.2011.11.122

54. Dimitriadou, , E. and K. E. Zoiros, "On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical ampli¯er-based Mach-Zehnder interferometer," Optics and Laser Technology , Vol. 44, No. 6, 1971-1981, 2012.
doi:10.1016/j.optlastec.2012.02.022

55. Dimitriadou, , E., K. E. Zoiros, and , "On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach Zehnder interferometer," Journal of Optics, Vol. 14, No. 10, 2012.
doi:10.1088/2040-8978/14/10/105401

56. Dimitriadou, E. and K. E. Zoiros, "Proposal for ultrafast all-optical XNOR gate using single quantum-dot semiconductor optical ampli¯er-based Mach-Zehnder interferometer," Optics and Laser Technology, Vol. 45, No. 1, 79-88, 2013.
doi:10.1016/j.optlastec.2012.07.024

57. Yang, , W., M. Zhang, and P. Ye, "Analysis of all-optical demultiplexing from 160/320 Gbit/s to 40 Gbit/s using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Microwave and Optical Technology Letters, Vol. 52, 1629-1633, 2010.
doi:10.1002/mop.25287

58. Papadopoulos, , G. and K. E. Zoiros, "On the design of semiconductor optical amplifier-assisted Sagnac interferometer with full data dual output switching capability," Optics and Laser Technology, Vol. 43, No. 3, 697-710, 2011.
doi:10.1016/j.optlastec.2010.09.012

59. Qasaimeh, , O., "An analytical model for quantum dot semiconduc-tor optical amplifiers," Optics Communications,, Vol. 222, No. 1--6, 277-287, 2003.
doi:10.1016/S0030-4018(03)01557-8

60. Barnham, , K. and D. D. Vvdensky, Low-dimensional Semicon-ductor Structures: Fundamentals and Device Applications,, Cambridge University Press, 2001.
doi:10.1017/CBO9780511624247

61. Scheel, , H. J. and P. Capper, "Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production," Wiley- VCH, , 2008.

62. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Acceleration of gain recovery and dynamics of electrons in QD-SOA," IEEE Journal of Quantum Electronics, Vol. 41, No. 10, 1268-1273, 2005.
doi:10.1109/JQE.2005.854131

63. Ben-Ezra, , Y., B. I. Lembrikov, and M. Haridim, "Specific features of XGM in QD-SOA," IEEE Journal of Quantum Electronics, Vol. 43, No. 8, 730-737, 2007.
doi:10.1109/JQE.2007.901587

64. Ben-Ezra, , Y., M. Haridim, B. I. Lembrikov, and M. Ran, "Proposal for all-optical generation of ultra-wideband impulse radio signals in Mach-Zehnder interferometer with quantum-dot optical amplifier," IEEE Photonics Technology Letters,, Vol. 20, No. 7, 484-486, 2008.
doi:10.1109/LPT.2008.918256

65. Majer, , N., K. Ludge, and E. Scholl, "Cascading enables ultrafast gain recovery dynamics of quantum dot semiconductor optical amplifiers," Physical Review B, Vol. 82, 2010.

66. Hamie, , A., M. Hamze, J. L. Wei, A. Sharaiha, and J. M. Tang, "Theoretical investigations of quantum-dot semiconductor optical ampli¯er enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems," Optics Express,, Vol. 19, No. 25, 25696-25711, 2011.
doi:10.1364/OE.19.025696

67. Li, , X., G. Li, and , "Comments on `theoretical analysis of gain recovery time and chirp in QD-SOA'," IEEE Photonics Technology Letters, Vol. 18, No. 22, 2434-2435, 2006.
doi:10.1109/LPT.2006.886135

68. Sygletos, , S., M. Spyropoulou, P. Vorreau, R. Bonk, I. Tomkos, W. Freude, and J. Leuthold, "Multi-wavelength regenerative ampli¯cation based on quantum-dot semiconductor optical amplifiers," Proceedings of International Conference on Transparent Optical Networks,, 234-237, 2007.

69. Bogoni, , A., L. Poti, P. Ghelfi, M. Scaffardi, C. Porzi, F. Ponzini, G. Meloni, G. Berrettini, A. Malacarne, and G. Prati, "OTDM-based optical communications networks at 160 Gbit/s and beyond," Optical Fiber Technology, Vol. 13, No. 1, 1-12, 2007.
doi:10.1016/j.yofte.2006.08.001

70. Uskov, , A. V., J. Mork, B. Tromborg, T. W. Berg, I. Magnusdottir, and E. P. O'Reilly, "On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers," Optics Communications, Vol. 227, No. 4--6, 363-369, 2003.
doi:10.1016/j.optcom.2003.09.052

71. Zilkie, , A. J., J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, and K. J. Malloy, "Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 um," Journal of Lightwave Technology, Vol. 26, No. 11, 1498-1509, 2008.
doi:10.1109/JLT.2008.923215

72. Yang, , W., M. Zhang, and P. Ye, "Analysis of 160 Gb/s all-optical NRZ-to-RZ data format conversion using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer," Optics Communications, Vol. 282, No. 9, 1744-1750, 2009.
doi:10.1016/j.optcom.2009.01.055

73. Agrawal, G. P., "Fiber-optic Communication Systems," Wiley, 2002.

74. Zoiros, , K. E., P. Avramidis, and C. S. Koukourlis, "Performance investigation of semiconductor optical amplifier-based ultrafast nonlinear interferometer in nontrivial switching mode," Optical Engineering,, Vol. 47, No. 11, 2008.
doi:10.1117/1.3028348

75. Gutierrez-Castrejon, , R., L. Occhi, L. Schares, and G. Guekos, "Recovery dynamics of cross-modulated beam phase in semicon-ductor ampli¯ers and applications to all-optical signal processing," Optics Communications,, Vol. 195, No. 1--4, 167-1771, 2001.
doi:10.1016/S0030-4018(01)01315-3