Vol. 29
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-02-26
On the Rotationally-Cylindrical Model of the Human Body Exposed to ELF Electric Field
By
Progress In Electromagnetics Research M, Vol. 29, 165-179, 2013
Abstract
The paper presents an assessment of human exposure to extremely-low-frequency (ELF) electric field generated by a power line using the rotationally-cylindrical body model. The formulation is based on the Laplace type continuity equation. The induced current density in the three-dimensional (3D) model human body is obtained by solving the Laplace equation via the Finite element method (FEM). The main objective is to highlight some parameters influencing the distribution of the induced current density, such as the ohmic contact between the feet and the soil due to the soles of the shoes, and the electrical parameters of the soil. Furthermore, the influence of internal organs (the human model) to the induced current density distribution. The human body is represented by a homogeneous model and also by an inhomogeneous model composed of several organs namely brain, heart, lungs, liver and intestines, whose shapes were spheroid. The proposed model has been validated through comparison to either the experimental results or the theoretical results available in literature being computed by the aid of a homogeneous body model.
Citation
Abdelmalek Laissaoui, Bachir Nekhoul, Kamal Kerroum, Khalil El Khamlichi Drissi, and Dragan Poljak, "On the Rotationally-Cylindrical Model of the Human Body Exposed to ELF Electric Field," Progress In Electromagnetics Research M, Vol. 29, 165-179, 2013.
doi:10.2528/PIERM13012812
References

1. Gonzalez, C., A. Peratta, and D. Poljak, "Boundary element modelling of the human body when exposed to overhead power lines: Influence on conductivity variations," 17th International Conference on Software, Telecommunications & Computer Networks, SoftCOM 2009, 1-5, Sep. 2009.

2. International Commission on Non-ionizing Radiation Protection "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," Health Physics, Vol. 74, No. 4, 494-522, Apr. 1998.

3. International Commission on Non-ionizing Radiation Protection "Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz-100 kHz)," Health Physics, Vol. 99, No. 6, 818-836, Dec. 2010.

4. Stuchly, M. A. and T. W. Dawson, "Human organ and tissue induced currents by 60 Hz electric and magnetic fields," Proceedngs of 19th International Conference of IEEE, Engineering in Medicine and Biology Society, Vol. 6, 2464-2467, Chicago, IL, USA, Oct. 30-Nov. 2, 1997.

5. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

6. Chiba, A. and K. Isaka, "Analysis of current densities induced inside a human model by the two-step process method combining the surface-charge integral equation and the finite-element method," Electronics and Communications in Japan, Part 2, Electronics, Vol. 79, No. 4, 102-111, 1996.
doi:10.1002/ecjb.4420790412

7. Chiba, A. and K. Isaka, "Density distribution of currents induced inside the brain in the bead part of the human model exposed to power frequency electric field," IEEE 11th Int. Symp. High Voltage Eng., Vol. 1, No. 467, 307-310, London, 1999.

8. Chiba, A., K. Isaka, Y. Yokoi, M. Nagata, M. Kitagav, and T. Matsuo, "Application of finite element method to analysis of induced current densities inside human model exposed to 60 Hz electric field," IEEE Trans. Power Apparatus and Systems, Vol. 103, No. 7, 1895-1902, 1984.
doi:10.1109/TPAS.1984.318655

9. Poljak, D. and Y. Rashed, "The boundary element modelling of the human body exposed to the ELF electromagnetic fields," Elsevier Engineering Analysis with Boundary Elements, Vol. 26, No. 10, 871-875, 2002.
doi:10.1016/S0955-7997(02)00055-3

10. Poljak, D., C. Gonzales, and A. Peratta, "Assessment of human exposure to extremely low frequency electric fields using different body models and the boundary element analysis," 18th ICECom International Conference on Applied Electromagnetics and Communications, 109-112, 2005.

11. Deford, J. F. and O. P. Gandhi, "An impedance method to calculate currents induced in biological bodies exposed to quasi --- Static electromagnetic fields," IEEE Transactions on Electromagnetic Compatibility, Vol. 27, No. 3, 168-173, 1985.
doi:10.1109/TEMC.1985.304281

12. Mezoued, S., B. Nekhoul, D. Poljak, K. ElKhamlichi Drissi, and K. Kerroum, "Human exposure to transient electromagnetic fields using simplified body models," Engineering Analysis with Boundary Elements, Vol. 34, No. 1, 23-29, 2010.
doi:10.1016/j.enganabound.2009.07.013

13. Biro, O. and K. Preis, "On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents," IEEE Transaction on Magnetics, Vol. 25, No. 4, 3145-3159, 1989.
doi:10.1109/20.34388

14., Comsol Version 3.5a, COMSOL Multiphysics Finite Elements Analysis Software, COMSOL, Stockholm, Sweden.
doi:10.1109/20.34388

15. Furse, C. M. and O. P. Gandhi, "Calculation of electric fields and currents induced in a millimeter resolution human model at 60 Hz using the FDTD method," Bioelectromagnetics, Vol. 19, 293-299, 1998.
doi:10.1002/(SICI)1521-186X(1998)19:5<293::AID-BEM3>3.0.CO;2-X

16. King, R. W. P., "A review of analytically determined electric fields and currents induced in the human body when exposed to 50-60-Hz electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1186-1192, 2004.
doi:10.1109/TAP.2004.827487

17. Hoang, L. H., "Contribution a la modelisation tridimensionelle des interactions champ electromagnetique corps humain en basses frequences,", These No. E.C.L.2007-32, Ecole Centrale de Lyon, 2007.

18. Yamazaki, K., T. Kawamoto, H. Fujinami, and T. Shigemitsu, "Investigation of ELF magnetically induced current inside the human body: Development of estimation tools and effect of organ conductivity," Electrical Engineering in Japan, Vol. 134, No. 2, 1013-1020, 2001.
doi:10.1002/1520-6416(20010130)134:2<1::AID-EEJ1>3.0.CO;2-6

19. Min, S. W., E. S. Kim, and S. H. Myung, "Calculation and measurement of induced current density inside human body under 60 Hz ELF magnetic fields," EMC 09, Vol. 21S3-2, 185-188, Kyoto, 2009.